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Abstract

Effective management of water resources, including surface and ground water, is vital and
relies on a thorough understanding of climatic and hydrological (or ‘hydroclimatic’) variability.
In Australia hydroclimatic variability is associated with several large-scale climate modes,
including remote phenomena such as El Nifio — Southern Oscillation (ENSO) and the Indian
Ocean Dipole (IOD), and more regional climate indices such as the sub-tropical ridge (STR).
Individually, the large-scale climate regimes typically associated with rainfall events are well
understood. However, less is known about the interactions between, or combinations of,
different large-scale conditions that influence Australian hydroclimatic regimes. These
interactions are non-linear so traditional statistical frameworks may be unable to adequately

characterise these relationships.

Classification and Regression Trees (CART) are well suited to analysing relationships
between predictor and response variables, including those based on categorical events, that may
be modulated by several predictor variables acting together. By employing a more appropriate
and novel statistical method this thesis aims to better understand relationships between large-

scale modes of climate variability and Australian hydroclimatic regimes.

In this work, tree-based models were used to classify regional Australian rainfall regimes

from indices of ENSO, the IOD and the STR, yielding the following conclusions.

(1) Interactions between tropical (ENSO, IOD) predictor variables and the STR control the
strength of the tropical teleconnection and the influence on regional rainfall regimes in southern
Australia. When tropical modes and the STR are in the same phase, rainfall regimes are
continent-wide and spatially coherent. However, when indices of climate modes are in the
opposite phases, i.e. El Nifio combined with low STR intensity, the modulation of the tropical
teleconnection by the STR is evident, as rainfall anomalies are confined to the northeast of the

continent.

(2) The influence of both STR intensity and position on rainfall regimes in southeastern
Australia was defined. STR position was crucial for defining two distinct types of “wet”
autumns, a “summer-like” (“winter-like”’) regime when the STR was in a southerly (northerly)
position. The summer-like regime occurs at frequencies that have not changed detectably over
the instrumental record. However, the frequency of the winter-like regime has declined
significantly. In addition, the dry regime defined by high STR intensity has been the most
frequent regime in recent years, consistent with the attribution of STR intensity as the main

driver of the Millennium Drought.
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(3) The predictive persistence of relationships between a suite of predictor variables
(indices of ENSO, IOD and the STR) and rainfall, upper-layer and lower-layer soil moisture
was explored. The predictability of spring rainfall was similar using both random forests (a
bootstrapping implementation of CART) and linear regression, suggesting results are not
dependent on method. The key result, of possible use in seasonal forecasting, is that, deep soil
moisture in spring and summer exhibits significantly more predictability than rainfall and
shallow soil moisture, due to the persistence of tropical climate drivers and the removal of high-
frequency variability in deep layers by natural temporal smoothing as soil moisture is

transferred to deep soil layers.
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Chapter 1 : Introduction

1.1 Motivation

Current and future fresh water resource management is one of the most important
environmental issues globally. Effective management of global fresh water resources, including
surface and ground water, is vital and relies on a thorough understanding of climatic and
hydrological (or ‘hydroclimatic’) variability, thereby benefiting society, the environment and
economies (Campbell 2005). Globally, droughts have been common over at least the last
millennium, often related to large-scale phenomena such as El Nifio — Southern Oscillation
(ENSO) (Dai 2010). In addition, changes in hydroclimatic variability are expected in the future
(Dai 2010, Leblanc et al. 2012) which will likely increase pressure on water resource

management.

Australian hydroclimate is highly variable, with periods of above and below average
rainfall and runoff prevalent throughout the instrumental record (Australian Bureau of
Meteorology 2013b). Drying and warming trends in southeastern Australia over the last 60-
years (Figure 1.1) have increased pressure on water resources (Leblanc et al. 2012). This is
particularly important since Australia has the lowest runoff per unit area of any inhabited
continent (Smith 1998). These pressures are compounded by the changes to the hydrological
cycle itself including changing the seasonality of rainfall and hydrological variability (CSIRO
2012, Dore 2005).
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Figure 1.1. Linear trend in Australian annual average total rainfall (left) and
mean temperature (right) over the period 1950 — 2012 (Australian
Bureau of Meteorology 2013b)

Understanding the large-scale conditions that are associated with hydroclimatic regimes,

and the interactions between hydroclimatic variability and ‘climate drivers’ (i.e. indices of
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large-scale modes of climate variability that have relationships with hydroclimates), is critical
for natural resource managers in Australia. This is the principal theme of this thesis. Previous
research on this topic has focused on southeastern Australia, due to its importance as a food-
producing region, heavily reliant on hydrological resources (CSIRO 2012). Here, the focus will
be broadened to include other regions in northern and southern Australia so that regional

variability in relationships can be assessed.

Numerous climate drivers influence southeastern Australian hydroclimate variability,
including ENSO, the Indian Ocean Dipole (IOD) and the sub-tropical ridge (Cai et al. 2011b,
CSIRO 2012, Drosdowsky and Chambers 2001, Kirono et al. 2010, McBride and Nicholls
1983, Meyers et al. 2007, Nicholls 1989, Risbey et al. 2009, Timbal and Drosdowsky 2013,
Ummenhofer et al. 2009a, Ummenhofer et al. 2011), rendering it a complex region to analyse
(Figure 1.2). However, it is critical that we understand the current drivers of hydroclimatic
variability to give context for future climate changes and corresponding water resources
management. In addition, is it is also vital to understand the inferactions between large-scale

modes of climate variability that drive hydroclimatic variability.
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Figure 1.2. Schematic representation of the major Australian climate
influences, including El Niflo — Southern Oscillation, the Indian
Ocean Dipole and the summer and winter positions of the sub-
tropical ridge (Australian Bureau of Meteorology 2010) based on
Risbey et al., 2009)

Each of the large-scale modes that govern Australia’s climate has been individually studied
in the scientific literature (see Chapter 2), and, increasingly, interactions between climate
drivers is the focus of research (Ummenhofer et al. 2009a, Ummenhofer et al. 2009b). Linear
statistics have been the cornerstone of climate research, with statistical techniques such as
correlation, regression and principal components analysis forming the foundation of the
scientific knowledge base (Drosdowsky and Williams 1991, McBride and Nicholls 1983,
Nicholls 1989, Timbal and Drosdowsky 2013, Timbal and Hendon 2011). However, many
classical statistical techniques are limited to capturing the linear portion of the variability
(Campbell et al. 2000) while research into the interactions between hydroclimatic variability
and large-scale modes of climate variability is complicated by non-linear relationships.
Research within the classical linear framework has increased scientific understanding of many
climate processes that influence Australia, particularly those related to tropical influences
(Drosdowsky and Williams 1991, Evans and Allan 1992, Nicholls 1989, Power et al. 1998). Yet
important questions remain about the nature of interactions between the large-scale modes of
climate variability that influence Australian hydroclimate. This thesis endeavours to answer

such questions.
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Rainfall, and by extension all hydroclimatic variability, is provisional upon specific local
conditions, e.g. sufficient moisture availability, uplift or instability. These local conditions are,
in turn, associated with larger-scale regimes, so that rainfall events are much more likely under
particular large-scale conditions than others, e.g. La Nifla compared to El Nifio events. In
addition, the large-scale conditions associated with rainfall can be viewed as discrete events that
must be combined in particular ways to make rainfall possible. As such, a Classification and
Regression Trees (CART) analysis may be more suited to the analysis of discrete events, such

as rainfall or the large-scale conditions associated with rainfall.

Statistical models must be able to capture interactions in the system, such as regime-
dependent behaviours (Campbell 2005). Tree-based methods, which include CART (see
Chapter 3) (Breiman et al. 1984), are a set of statistical techniques that facilitate exploration of
discrete climate processes. Tree-based methods therefore have considerable potential for
examining the relationships between large-scale climate modes and Australian hydroclimatic
variability. It is not suggested that tree-based models should be used to the exclusion of the
linear statistical method, but all statistical methods have various strengths and weaknesses.
Indeed, one strength of CART is its ability to explore relationships between categorical event
based response variables and multiple predictor variables. A classical statistical framework has
worked well in the past to describe the linear aspects and lower dimensional problems (i.e.
influence of individual drivers on hydroclimatic variability). But as we increasingly consider
event-based, non-linear and multi-dimensional problems we need to move to a statistical
framework that has more ability to capture this complexity. The economic, social and
environmental impacts of changing climate regimes are extensive so there is an obligation to
utilise the most appropriate methods to understand the event-based, conditional nature of
relationships between large-scale modes of climate variability and Australian hydroclimatic

regimes.
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1.2 Thesis Aim

The aim of the research reported in this thesis is to increase understanding of interactions

between large-scale modes of climate variability that influence Australian hydroclimatic

regimes. More specifically, a novel statistical tree-based method will be applied to the

Australian Water Availability Project data set (AWAP — see Chapter 3) that will enable an

assessment of the interactions between large-scale climate modes that are important for

Australian hydroclimatic regimes across the continent. This will increase our understanding of

interactions between large-scale modes of climate variability across the hydrological cycle,

thereby answering the key research questions below:

What is the current state of understanding on the topic (Chapter 2), including the existing

datasets to study the problem (Chapter 3)?

Are the known relationships between indices of large-scale climate variability and

Australian hydroclimatic regimes reflected in the AWAP data set (Chapter 4)?

What can relationships between Indo-Pacific sea-surface temperature variability and the
sub-tropical ridge interactions tell us about regional Australian hydroclimatic regimes
(Chapter 5)?

What additional information about spatial and temporal relationships between Australian

hydroclimatic regimes and large-scale modes of climate variability can be gained through a

tree-based analysis (Chapter 6)?

How much predictive information is available in CART-based relationships between
Australian hydroclimatic regimes and large-scale modes of climate variability, and can
such predictive information be applied to problems of seasonal hydroclimatic forecasting

(Chapter 7)?

1.3 Significance

The new developments presented here are:

A comprehensive analysis of linear relationships between regional and remote large-scale
modes of climate variability and Australian hydroclimate using the AWAP data set
(Chapter 4);

A demonstration of the importance of tropical — sub-tropical interactions in modulating the

spatial extent of ENSO events (Chapter 5);
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3. A demonstration of the importance of STR position, in addition to the role of STR
intensity, in determining rainfall regimes in southeastern Australia (Chapter 6); and

4. A demonstration of the greater predictability of lower-layer soil moisture over rainfall and

upper-layer soil moisture (Chapter 7);

1.4 Structure of this thesis

This thesis combines traditional thesis chapters with chapters in the form of published
papers (Table 1.1).

Table 1.1. The structure of the chapters in this thesis and the percentage
contribution of each chapter by Kirien Whan.

Chapter Structure Contribution
Chapter 1: Introduction Thesis chapter 100%
Chapter 2: Literature Review Thesis chapter 100%
Chapter 3: Data and Methods Thesis chapter 100%
Chapter 4: Linear analysis Thesis chapter 100%
Chapter 5: Tropical — sub-tropical interactions Thesis chapter 100%
Chapter 6: STR intensity and position interactions  Paper published 70%
Chapter 7: Predictability of hydroclimatic regimes  Thesis chapter 70%
Chapter 8: Synthesis and Conclusions Thesis chapter 100%

A higher-level literature review and explanation of data and methods are presented next in
Chapters 2 and 3, respectively, to provide an overall context to the thesis. Following this are two
results chapters structured as traditional thesis chapters (Chapters 4 and 5). Chapter 4
establishes the linear relationships between indices of large-scale modes of climate variability
and Australian hydroclimate, as expressed in the AWAP data set. The first of the tree-based
analyses are presented in Chapter 5, which contains an introduction to the tree-based methods
and then focuses on tropical — sub-tropical interactions that affect regional Australian rainfall
variability. The analysis in Chapter 6 considers the roles of STR intensity and position in
determining rainfall regimes in southeastern Australia and has been published in the
International Journal of Climatology (Whan et al. 2013). Bertrand Timbal and Janette Lindesay
assisted me in framing the problem. I conducted the analysis but had assistance from Bertrand
Timbal with the interpretation of results and writing the paper. Chapter 7 explores the
predictability of hydroclimatic regimes using linear regression and random forests. I conducted
the analysis but had assistance from Michael Raupach (problem framing and interpretation),
Janette Lindesay (problem framing) and Emlyn Williams (interpretation). Finally, Chapter 8
summarises the conclusions and novel aspects of this work, and presents suggestions of future

work.
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Chapter 2 : Literature Review

2.1 Chapter summary and context

This chapter will introduce the major features and current understanding of Australian
hydroclimatic variability and trends (Section 2.2). To preface subsequent discussion of how
interactions between remote large-scale modes of climate variability influence hydroclimatic
regimes in Australia, the current understanding of the mechanisms and impacts of these large-
scale modes is discussed in Section 2.3 and relevant research gaps are identified. Finally, the
predictive capability of tree-based methods is explored in Chapter 7 so some discussion of the

predictability of Australian hydroclimatic regimes will be outlined in Section 2.4.

2.2 Background of Australian climate and hydrology

This section will outline the global climate features that broadly define Australian climate
on seasonal timescales along with discussions of spatial and temporal hydroclimatic variability
in Australia (Section 2.2.1). This is followed by a summary of interactions between climatic and

hydrological variability (Section 2.2.2).

2.2.1 Hydroclimatic variability and trends

The majority of the Australian population resides in the temperate southeast (Campbell and
Palmer 2010) with higher rainfall recorded in the north, south and east coasts, while a large
portion of the Australian continent is arid or semi-arid (Barros and Bowden 2008). Australia is a
large continent stretching from the tropics to the mid-latitudes and under the influence of
several features of the global circulation, namely the Hadley and Walker Circulations (Figure
2.1). The Hadley Cell is a meridional circulation driven by differences in surface heating
between the equator and the poles. An excess of heat at the equator causes convection and the
upward movement of air that is known as the Intertropical Convergence Zone (ITCZ). Air and
heat travel poleward in the upper atmosphere, descending in the sub-tropics. This region of
subsidence is known as the sub-tropical ridge (STR). The annual meridional movement in the
ITCZ, and concurrent shift in the STR, controls the seasonality of Australian rainfall including
the Australian Monsoon (Sturman and Tapper 2005) and the position of the mid-latitude storm
track (Drosdowsky 2005, Peixoto and Oort 1992, Sturman and Tapper 2005, Timbal and
Drosdowsky 2013).
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Zonal circulations in all ocean basins modulate the meridional Hadley Cell. The largest
and most well known of these zonal features that influences Australian climate variability is the
Walker Circulation. Driven by differences in sea surface temperature (SST) between the tropical
eastern and western Pacific Ocean, the Walker Circulation (or Southern Oscillation) is the
atmospheric branch of the coupled ocean-atmosphere El Nilo-Southern Oscillation (for further

discussion of ENSO see Section 2.3.1).

Figure 2.1. The zonal and meridional elements of the global circulation that
are relevant to Australia, including the Hadley and Walker
Circulations (Sturman and Tapper 2005).

A majority of research has focused on rainfall because of its practical importance, its
superior observational network, and the importance of significant cumulative effects such as
flood and drought (Pittock 1975). Annual average rainfall is highest in northern and eastern
Australia, along the Great Dividing Range (GDR), and in western Tasmania (Figure 2.2). Mean
seasonal rainfall varies greatly throughout the year and is controlled on the broad scale by
seasonal movements in the Hadley Circulation. As such, summer rainfall dominates in tropical
northern Australia as the ITCZ is located over northern Australia during the monsoon season
(Sturman and Tapper 2005). In contrast, parts of southern Australia are dominated by winter
rainfall as the location of the STR at lower latitudes allows the passage of frontal systems,
imbedded in the mid-latitude westerly airstream, over southern Australia. The location of the
STR at higher latitudes in summer results in a southerly shift in the mid-latitude storm track that
pushes these rain-bearing systems to the south of the continent (Drosdowsky 2005, Peixoto and

Oort 1992, Sturman and Tapper 2005, Timbal and Drosdowsky 2013). Rainfall in southern

Kirien Whan Chapter 2: Literature Review



9

Australian is also influenced by topography, with increased rainfall along the Great Dividing
Range (GDR) in all seasons (Figure 2.2). Southeasterly surface trade winds are associated with
the mean Walker Circulation (Figure 2.1) and result in higher rainfall across the east coast,

particularly in northern Australia (Figure 2.2).
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Figure 2.2. a) Annual average Australian rainfall (1961-1900) and b) Mean
seasonal Australian rainfall (1961-1990) in autumn (top left), winter
(top right), spring (bottom left) and summer (bottom right)
(Australian Bureau of Meteorology 2011b).

The variability in Australian rainfall changes seasonally, with most variability for southern
Australia focused in the late summer — early autumn period (Figure 2.3). The tropical climate
drivers are active from winter to summer when there is less rainfall variability. This suggests
that random weather noise during the late summer — autumn period, when the large-scale modes
are inactive, is responsible for the largest variability (see Sections 2.3.1 and 2.3.2 for further

discussion of Pacific and Indian Ocean climate drivers). There is limited understanding of how
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large-scale climate drivers interact with smaller scale weather features (see subsequent sections

for some discussion of this). These interactions are the focus of Chapter 5.

Rainfall variability = Rainfall variability
June to August N February to April

(Percentile analysis) ” Tt Hol (Percentile analysis)

Figure 2.3. Variability of seasonal Australian rainfall in the low variability
June-August (left), and the high variability February-April (right),
calculated over the period 1900 — 2003. Variability is calculated by
dividing the difference between the 90" and 10" percentiles by the
50" percentile (Australian Bureau of Meteorology 2011b).

Trends in rainfall, over the period 1970 — 2010, vary seasonally and spatially over the
continent (Figure 2.4). The northwest of Australia has experienced large increases in rainfall,
particularly in summer when the bulk of rainfall is delivered to the region, while rainfall
declines are evident in autumn in the southeast (Murphy and Timbal 2008). During the
Millennium Drought (1997 — 2009), southeast Australia experienced a rainfall deficit with the
driest 13-year period on record that was 45% drier than the next driest period (CSIRO 2012,
Timbal and Drosdowsky 2013). During this time no stations in northwest Victoria experienced
an extremely wet season (Pook et al. 2009) and this has occurred as part of a more widespread
decline with decile one rainfall apparent across the entire MDB catchment (Timbal 2009). This
rainfall deficit occurred primarily in the cool season, from March — October (Timbal and
Drosdowsky 2013), with a majority (60%) of the decline in autumn (Cai and Cowan 2008a, Cai
et al. 2009a, Kiem and Verdon-Kidd 2010, Murphy and Timbal 2008). This long dry spell
ended in 2010 when a strong La Nifia event was associated with heavy rainfall in southeastern

Australia (Australian Bureau of Meteorology 2011a).
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Figure 2.4. Seasonal Australian rainfall trends over the period 1970 — 2010 in
autumn (top left), winter (top right), spring (bottom left) and
summer (bottom right) (Australian Bureau of Meteorology 2011b).
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Trends in rainfall are less robust over different time periods as decadal and interannual

variability dominates the rainfall signal (Figure 2.5). Understanding the drivers of this

interannual rainfall variability is a key issue for Australia. A great deal of research is focused in

this area but significant research gaps remain that are explored throughout this thesis.
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Annual rainfall anomaly - Southeastern Australia (1900-2012)
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Figure 2.5. Southeastern Australian annual rainfall anomalies (from the 1960-
1990 climatology), over the period 1900 — 2012 (Australian Bureau
of Meteorology 2011b).

Seasonal and temporal hydrological variability broadly mirrors that of rainfall as it
responds directly to changes in rainfall and temperature. Regionally, annual average runoff
(shown as a percentage of total Australian runoff in Figure 2.6) varies in a broadly similar way
to rainfall (Figure 2.2) with the largest values in northern and eastern Australia. Runoff
seasonality also reflects rainfall, with most runoff produced in southeast Australia in winter and
spring when rainfall levels are high and temperatures are low (Kirono et al. 2010). Runoff has
decreased in Australia (Cai et al. 2009a) and in other large regions globally, even when

accounting for human uses, despite little trend in rainfall levels (e.g. Fu et al., 2004).
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Mean Annual Runoff
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Figure 2.6. Mean annual runoff, as a percentage of totally Australian runoff,
in Australian drainage divisions (National Water Commission
2005). See Chapter 3 for the definition of the regions.

The Millennium Drought (Leblanc et al. 2012) highlighted the importance of
understanding hydroclimatic variability in a seasonal context. The 59% reduction in runoff
during the period 1997-2008 was larger than expected from the 15% rainfall reduction and the
long-term rainfall elasticity of runoff which suggested a 39% reduction in runoff (Potter and
Chiew 2011). A majority (52%) of the runoff reduction is associated with reduced rainfall
(Potter and Chiew 2011). Other sources have been identified, namely the seasonality of the
rainfall decline and reduced interannual variability (Cai et al. 2009a, Potter and Chiew 2011,
Verdon-Kidd and Kiem 2009a). While early research suggested a large portion of the runoff
decline was associated with increased temperatures (Cai et al. 2009a) more recent work suggests
only a relatively minor role (5%) of increased temperatures through changes in potential
evaporation (Potter and Chiew 2011). Differences between the estimated role of temperature on
declining runoff likely stem from the incorporation of seasonality or interannual changes in the
temperature residual used by the earlier study (Cai et al. 2009a, Potter and Chiew 2011). Early
research suggest that a 1°C rise in temperature is associated with a 15% reduction in annual
streamflow (Cai and Cowan 2008b) but this figure was later updated as research suggested that
the same temperature rise is associated with a 4% reduction in streamflow (CSIRO 2012).
Differences in the estimations using various methods (statistical or dynamical modelling)
highlight the complexity of rainfall — runoff relationships. The interactions between climate and

hydrology will be discussed further in Section 2.2.2.
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Autumn rainfall is essential to establish antecedent soil moisture conditions that are
necessary to efficiently convert rainfall to runoff throughout the following seasons (Cai et al.
2009a, Kiem and Verdon-Kidd 2010, Pook et al. 2009). For this reason, the drought was
particularly apparent in the parts of southeast Australia that experienced winter rainfall, with a
focus on the early part of the season — May, June, July (Timbal and Jones 2008). The
Millennium Drought was characterised by the lowest river inflows (up to 44% below average)
on record in the MDB, despite the fact that lower-layer soil moisture and rainfall had not been

the lowest recorded values.

Until the introduction of The Australian Water Availability Project (AWAP) data set
(Raupach et al. 2008) hydrological research had traditionally focused on selective unimpaired
gauged catchments (Kirono et al. 2010) as gridded information across the Australian continent
was relatively scarce. Runoff and streamflow have been the focus of research due to data
availability and the importance of water availability and river levels for management. Even so
there have been many issues associated with streamflow data, for example, record length is
typically reduced compared to climatic data sets and many streams have since been regulated or

undergone major changes affecting flow characteristics (Chiew et al. 1998).

Data availability has left a significant research gap, to be addressed in this thesis, as to the
nature of the relationship between other hydrological variables, such as soil moisture, and large-
scale climate drivers. Soil moisture is one of the major constraints on agricultural productivity
(Mueller et al. 2010) and it moderates other facets of hydrology such as runoff production,
streamflow responses to rainfall and evapotranspiration (Perry and Niemann 2007).
Accordingly, soil moisture patterns are important for flood forecasting, climate modelling and
land management (Mueller et al. 2010). Soil moisture patterns are determined by multiple non-
linear physical processes which adds to the complexity and makes estimation difficult (Perry
and Niemann 2007). These processes may be locally controlled by spatial variations in soil
properties or through vertical fluxes such as infiltration or by evapotranspiration, particularly
during dry conditions (Perry and Niemann 2007). Different processes have strong relationships
with soil moisture at different scales; evapotranspiration affects larger scales and topography
dependant lateral redistribution at smaller scales (see references in Perry and Niemann, 2007).
In the past, widespread soil moisture observations have not been widely available. This
highlights the value in the AWAP data set and identifies a significant space in the literature that

this thesis addresses.

This section has outlined the features that broadly control climatic and hydrological spatial
and temporal variability across Australia. The importance of understanding interannual climate

variability was highlighted as changes in rainfall are dominated by these shorter-term
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fluctuations. Next, in Section 2.2.2, the important interactions between climate and hydrology
will be outlined with a discussion of the large-scale modes that affect interannual variability in

the Australian water balance to follow (Section 2.3).

2.2.2 Hydroclimatic interactions

The previous section (2.2.1) outlined the spatial and seasonal variability and trends in
climate and hydrology and touched on the relationship between hydroclimatic variables. This
section will further discuss the complex relationship between hydrology and climatic variables
because, on the large-scale that is the focus of this research, hydroclimatic variability is
dominated by rainfall variability (Lacey and Grayson 1998). The high degree of climatic
variability that southeast Australia experiences is reflected in a highly variable hydrological
cycle (Yu et al. 2010), with the sensitivity of streamflow to climatic variability globally

recognised (Fu et al. 2004, Seneviratne et al. 2012).

The relationship between rainfall and runoff is influenced by many factors, including the
seasonality and interannual variability of rainfall (Potter and Chiew 2011), temperature, losses
to ground water, irrigation or dam extractions, changes in fire regimes, land-use or vegetation
type, air pollution, sunshine hours or in the seasonality of rainfall (See Kiem and Verdon-Kidd,
2010, for references). Rainfall variability directly controls runoff generation, while temperature
variability has a second order effect controlling runoff through changes in evaporation and

transpiration (Yu et al. 2010).

The relationship between climate and hydrology is highly non-linear. Examples of this
non-linearity include the catchment response to rainfall due to the effects of soil moisture
(Murphy and Timbal 2008) and the magnification of a rainfall anomaly in the runoff response
(Barros and Bowden 2008). For example, in the MDB, a rainfall deficit of 20% is associated
with a 35% reduction in streamflow if there is no change in temperature, or a 45% reduction in
streamflow if temperature increases by 0.4°C (Yu et al. 2010). The largest streamflow
anomalies in the MDB are related to a specific temperature range, while changes in temperature
outside this range had little impact on streamflow. The physical mechanisms for complex non-
linear interactions are not clear, but it is suggested that temperature changes may be associated
with rainfall changes that directly modify hydrological processes (Yu et al. 2010). In addition,
while temperature has little influence on seasonal, de-trended upper level soil moisture the
relationship with lower-layer soil moisture is significant, particularly during spring and summer
(Cai et al. 2009a). This may be due to lagged effects and the more temporally consistent nature
of temperature compared to rainfall and suggests that as temperatures rise under climate change,

more water will be required to maintain the same soil moisture levels (Cai et al. 2009a).
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However this research is based on partial correlation analysis from the residual of the linear
regression of temperature on to rainfall. The complex non-linear interactions between climatic

and hydrological processes suggest that linear statistics may not be adequate.

The relationship between rainfall and soil moisture also varies with depth. Over the period
1950 — 2008, the trend in rainfall and upper level soil moisture show a coherent seasonality with
declines in autumn (Murphy and Timbal 2008). Lower level soil moisture on the other hand,
displays little seasonality due to the inherent ‘memory’ of the lower-layer. Upper-layer soil
moisture mirrors rainfall, as levels decline quickly due to evaporation to the atmosphere and
drainage to the lower-layers without additional rainfall recharge. This is reflected in the
correlation between the two variables that depletes at any lag. Lower-layer soil moisture levels
don’t show the seasonality of upper-layer soil moisture and rainfall. Lagged correlation between

rainfall and lower level soil moisture persists for several seasons (Cai et al. 2009a)

Further complicating hydroclimatic interactions are the effects with other factors such as
geology and vegetation. It has been shown that climate only has a significant effect on base flow
(e.g. the slowly varying portion of groundwater that is the sum of groundwater runoff and
delayed throughflow) for some geology — vegetation groups; i.e. when a Silurian or Devonian
sedimentary and mixed wet/damp forest, which may be due to the saturation of certain soil
types which may lead to higher base flow contributions, or to increased bedrock weathering and

thus deeper soils (Lacey and Grayson 1998).

This section has outlined the complexities associated with the relationship between
hydrological variables (streamflow, runoff, soil moisture and base flow) and climatic variability.
The non-linearity of the relationship suggests that linear statistics may not adequately describe
all aspects of the variability and that there is a role for novel statistical methods that can capture
the variability, such as CART. The following section (2.3) will outline the relationships between

large-scale mode of climate variability and Australian hydroclimate.

2.3 Influence of large-scale modes of climate variability
on Australian hydroclimate

The previous sections outlined the spatial and seasonal variability in Australian
hydroclimate (Section 2.2.1) and discussed the complexity of interactions between climate and
hydrology (Section 2.2.2). A general understanding of the spatial and seasonal variability is
necessary to give context to the drivers of interannual variability that will be discussed below.
This section will discuss the indices used to characterise each phenomena, the impacts and
mechanisms, and highlight research gaps, associated with the teleconnections to Australian

hydroclimate from the large-scale modes of climate variability used throughout this thesis. It
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should be noted that climate indices are a coarse and simplistic way to characterise complex and
spatially extensive phenomena (Sharma et al. 2000) but they are widely used which allows

comparison with other work.

Southeast Australia is under the influence of multiple climate drivers that have significant
and spatially consistent relationships with hydroclimatic variability. However, it should be
noted that these climate drivers are not independent of each other (Risbey et al. 2009) and the
interactions between the modes are complex and non-linear (Pook et al. 2009). Understanding
the relative and combined influences of non-independent, non-linear variables is challenging. In
addition, the region is expected to be particularly sensitive to interactions between climate
drivers (Kiem and Verdon-Kidd 2010, Risbey et al. 2009). The importance of a holistic
approach when examining the drivers of southeast Australian climate variability is highlighted
by the small fraction (less than 20%) of rainfall variability that large-scale drivers can explain
individually (Risbey et al. 2009). In addition, each of these large-scale modes of climate
variability has phases that are associated, individually, with increased or decreased rainfall
probabilities. So, like rainfall, these large-scale conditions can be considered discrete events that
must combine in particular ways to be conducive to rainfall. Increasing understanding of
complex interactions between such variables is difficult within a classical statistical framework.
This is a key location in the research space that the current research can add value by analysis

with a novel statistical method.

While the drivers of Australian hydroclimate vary spatially and seasonally, rainfall
anomalies can be broadly characterised by two major climate modes (Barros and Bowden
2008). The first, related to ENSO, is centred over the eastern half of the continent and
associated with SST anomalies in the Pacific Ocean (Drosdowsky 1993). The second pattern is
associated with the IOD and is related to northwest cloud-bands developing off the northwest
coast of Australia (Nicholls 1989). Generally, most rainfall variability can be explained by the
tropical modes of climate variability in spring (Risbey et al. 2009) although the STR also plays
an important role in southern Australia in autumn and early winter (Timbal and Drosdowsky

2013).

The remainder of this section discusses each of the major large-scale climate drivers in
more detail. Several key drivers of Australian climate (e.g. the Southern Annual Mode) are not
discussed or used throughout this work due to their limited predictability and data availability.
The omission of these drivers presents an avenue for future work. The tropical modes (ENSO
and the IOD) will be discussed first in Sections 2.3.1and 2.3.2, followed by the STR in Section
2.3.3.
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2.3.1 El Nino — Southern Oscillation

This section will outline ENSO mechanisms, indices and impacts on Australian
hydroclimatic variability. ENSO effects ecosystems and economies globally, as the impacts of
droughts and floods can be financially and environmentally devastating (Drosdowsky and
Williams 1991, Horel and Wallace 1981, Latif et al. 1998, Nicholls et al. 1997, Ropelewski and
Halpert 1987).

2.3.1.a Mechanisms

Exploration into the phenomena, beginning in the 1920s by Sir Gilbert Walker
(Ropelewski and Halpert 1987), led to a preliminary understanding of the Southern Oscillation,
or Walker Circulation. The zonal overturning of air across the equatorial Pacific Ocean is the
atmospheric component of the coupled ocean-atmosphere system with critical feedbacks
between the atmosphere and ocean (Vecchi et al. 2006). A fundamental mechanism driving
ENSO is the positive feedback between the difference in equatorial SST and easterly equatorial

wind stress, known as ‘Bjerknes feedback’ (Bjerknes 1969).

During La Nifa or normal conditions (Figure 2.7), strong easterly trade winds tilt the
thermocline and push warm surface water to the western Pacific around the maritime continent
region. The temperature gradient caused by a shallow thermocline and warmer water in the
western Pacific Ocean strengthens trade winds and maintains the large temperature gradient.
The warm (cool) surface water in the western (eastern) Pacific drives a centre of convection
(subsidence) that is associated with increased (decreased) rainfall. Conversely, during El Nifio
events, a weakening or reversal of the trade winds flattens the thermocline and shifts the warm
water anomaly and the centre of convective activity to the eastern Pacific, with cooler SST
anomalies, subsidence and decreased rainfall in the maritime continent region (Horel and

Wallace 1981, Trenberth 1997, Wang and Fiedler 2006).

A sufficient general understanding of these ENSO mechanisms has been developed over
recent decades. Yet the mechanisms associated with the specifics of ENSO events, such as their
termination (McGregor et al. 2013, McGregor et al. 2012), is still an active area of research.
Although there is a well-known climatology of the ENSO cycle, each event is different and

significant asymmetries exist between El Nifio and La Nifia events that are not well understood.
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Figure 2.7. Schematic of the typical sea-surface temperature anomalies,
atmospheric circulation and cloud cover during the cool (La Nifa,
left) and warm (El Nifio, right) phases of El Nifio — Southern
Oscillation (Allan et al. 1996, Stevens 2012).

2.3.1.b Indices

This section will outline the main indices used to characterise ENSO variability with a

detailed discussion of the specific indices used in this research in Chapter 3.

The Southern Oscillation Index (SOI) is a measure of the atmospheric component of
ENSO and is calculated by taking the difference in pressure between Tahiti and Darwin. A
positive SOI, or La Nifia event, is characterised by lower surface pressure in Darwin. The
strongest relationships are found between the SOI and rainfall when both series are averaged
over several months (Chiew et al. 1998). The removal of high frequency variability from the

series, associated with stochastic weather noise, leaves the ENSO signal.

The SOI has a stronger correlation with Australian rainfall than indices of the oceanic
component because the latter are several steps physically removed from the processes that
produce rainfall. Yet, the slowly-varying oceanic component is the source of predictability
(Risbey et al. 2009). The most common oceanic indices used to capture ENSO variability are
simple SST area-averages calculated over three regions in the central (Nifio 4), eastern (Nifio 3)
and central-eastern (Nifio 3.4) Pacific Ocean, that define an El Nifio event when SST anomalies
exceed a certain threshold (Ashok et al. 2007, Trenberth and Stepaniak 2001) . ENSO events
have many different “flavours”, and are defined by SST anomalies in different locations,
including canonical El Nifio events, ‘dateline’ El Nifio events, and El Nifio Modoki events

(Ashok et al. 2007, Kao and Yu 2009, Trenberth and Stepaniak 2001).
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The basic mechanisms of ENSO and the most common indices used to characterise the
state of the Pacific Ocean ENSO have been explained. A discussion of the impacts of ENSO on

Australian climate and hydrology are in the following sections.

2.3.1.c Impacts on climate

The 1982 El Nifio event cemented the importance of ENSO in the public eye and focused
investment and research, resulting in significant increases in understanding. It was the most
severe the El Nifio event on record, in terms of the SST anomalies and the associated rainfall

deficits (Wang and Fiedler 2006).

ENSO is the leading mode of interannual variability globally and affects many regions
through atmospheric teleconnections (Lu et al. 2008). Globally, 17 core ENSO regions were
identified from monthly rainfall totals from 1700 stations, mostly located in the vicinity of the
Pacific Ocean including the Australian sub-tropics (Ropelewski and Halpert 1987). In Australia,
ENSO is the primary driver of Australia hydroclimatic variability, in terms of both spatial
coverage and seasonal consistency (Risbey et al. 2009), with El Nifio events generally
associated with drought conditions (Arblaster et al. 2002, Chiew et al. 1998, Rasmusson and
Carpenter 1983, Vecchi et al. 2006). In addition, stations under the influence of ENSO
experience higher interannual rainfall variability (by up to 50%) compared to stations not

influenced by ENSO (Nicholls 1988).

The spatial characteristics and seasonality of the relationship between ENSO and
Australian rainfall are reasonably well established. El Nifio (La Nifia) events are associated with
decreased (increased) rainfall over the north and east of the continent (Figure 2.8). In spring, the
SOI explains approximately 35% of the variability in rainfall. This leaves a majority of rainfall
variability associated with other drivers or stochastic variability (Drosdowsky and Williams
1991, Risbey et al. 2009). So although ENSO is known as the largest driver of Australian
rainfall the low percentage of the rainfall variability explained by ENSO suggests that clearly
other factors, such as the IOD and smaller scale weather-type phenomena, are also important.
There is a robust linear relationship between the spatial extent of drought in tropical regions and
the strength of ENSO events (Lyon 2004), but the severity of a drought is not linearly related to
the strength of the ENSO event. Another example of the asymmetry of ENSO is how rainfall
increases linearly during La Nifia events, but declines non-linearly during El Nifio events and

the stronger correlation between rainfall and La Nifia compared to El Nifio (Power et al. 2006).

These non-linearities are inherent to the ENSO system and can limit our understanding and
predictability of the system. A vast majority of the research into ENSO impacts is based in

linear statistical framework, making use of techniques such as correlation and regression that are
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less suited to the analysis of interactions between discrete, event-based phenomena. This is the

niche in the literature where novel non-linear methods (e.g. CART) can play a vital role.
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Figure 2.8. Seasonal correlations over the period 1889 — 2006 between
Australian a) DJF, b) MAM, c) JJA and d) SON rainfall and the SOI.
Correlations significant at the 5% significance level are coloured
(Risbey et al. 2009).

The correlation between ENSO and Australian rainfall begins in winter and extends
through to the summer months, peaking in spring (Chiew et al. 1998, Drosdowsky and Williams
1991, Pittock 1975, Rakich et al. 2008, Risbey et al. 2009, Shi et al. 2008, Simmonds and Hope
1997). As such, ENSO adheres to a strict seasonal cycle as rainfall deficits begin in the winter
of an El Nifio year carry on for seven to ten months (Figure 2.9) into the beginning of the
following year (Chiew et al. 1998). The relationship between ENSO and Australian rainfall
weakens in the late summer and autumn months when El Nifio events decay (Drosdowsky and
Chambers 2001) with little significant relationship evident in autumn (Murphy and Timbal
2008).
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Figure 2.9. Composites of percentile log-normal rainfall distribution in
southeast Australia during 14 El Nifo events between 1910 - 1988
(Chiew et al. 1998).

Adding complexity is the decadal variability in the relationship between ENSO and
Australian rainfall (Figure 2.10). For example, the relationship between the SOI and all-
Australian rainfall was weak in the 1930-40s and has been weakening again since the 1970s.
Although, the relationship in the winter and spring is more stable over time than that in autumn
and summer (Suppiah 2004). The mechanisms for these changes in the warm season (DJF,
MAM) are not well understood and may be related to changes in variability. This decadal
variability is known as the Inter-decadal Pacific Oscillation (IPO). The IPO modulates ENSO
activity and the relationship with hydroclimatic variability (Power et al. 1999, Speer et al.
2009). The IPO has a clear statistical relationship with Australian climate, although some have
argued that it is a reflection of unpredictable stochastic ENSO variability related to the
frequency of warm and cold events (Speer et al. 2009). The causes of this decadal variability

remain not well understood.
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Figure 2.10 Variations in the correlation coefficient over the period 1900 -
1996, with a 21-year sliding window, between seasonal Australian
rainfall and the SOl in a) MAM, b) JJA, c) SON and d) DJF. The
horizontal lines indicate the 5% significance level, the dots
represent independent correlation coefficients for 21-years
(Suppiah 2004).

Not all ENSO events have the same impacts; the record strength El Nifio in 1997 produced
near average rainfall (which is attributed to a large rainfall event near the end of the season,
highlighting the role of stochastic weather noise), while the ‘weak’ event in 2002 was associated

with drought conditions in southeastern Australia. Although several competing theories attempt
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to explain the differences between ENSO events including zonal changes (Wang and Hendon
2007), internal atmospheric variability (Kumar and Hoerling 1997) and decadal modulation
(Power et al. 1999) there is little consensus on the issue. Variability in the strength of the ENSO
teleconnection is key and the factors controlling this are not well understood. Interactions

between ENSO and smaller scale weather-type phenomena are also not well understood.

A composite analysis of cool season rainfall (June — October) showed significantly lower
rainfall in El Nifio years; 10 out of 12 years experienced rainfall declines, of an average of
11mm month™ in southeast Australia. There was a tendency for La Nifia events to show a
rainfall increase but the results were not significant (Ummenhofer et al. 2009a). This result is
somewhat contrary to previous work that showing the strength of a La Nifia event is linearly
related to the magnitude of the rainfall increase (Power et al. 2006) and may stem from
differences in the types of analysis, i.e. composite analysis compared to examining the whole
ENSO cycle, and from comparing La Nifia events with positive SOI which includes years that
are not classified as La Nifia events. The different conclusions from different analysis methods
suggest that the results are sensitive to the somewhat arbitrary classification of ENSO events.

CART provides an objective way to classify regimes, as will be discussed later.

Ultimately ENSO effects rainfall through changes to synoptic systems and moisture
availability. Cut-off lows are a major source of rainfall in southern Australia and are influenced
by tropical activity. A case study analysis of 1982 (a “dry canonical” El Nifio event), 1997 (a
“wet canonical” El Nifio event) and 2002 (a “dry dateline” El Nifio event) showed much less
rainfall per cut-off low events during the dry events (1982, 2002), while average rainfall was
achieved in 1997 from a small number of high rainfall events (see Brown et al. 2009 for
definition of wet and dry canonical and dateline El Nifio events). Back tracking air parcels
found that the moisture source for these high rainfall cut-off lows was adjacent to northeastern
Australia, while during the dry years air was sourced from the coast of southwestern Australia
(Brown et al. 2009). Wet synoptic types associated with the northward movement of the STR
and a strong pre-frontal trough are more common in autumn during La Nifia years resulting in
more reliable autumn rainfall (Verdon-Kidd and Kiem 2009b). These tropical — sub-tropical
interactions show how ENSO can influence frontal systems and rainfall in southern Australia. It
is important to understand when the effect of one mode depends on the level of a second mode
because these interactions are vital to the forcing of southeast Australian hydroclimatic
variability, although other research has failed to find a relationship between ENSO and
synoptic-scale variability such as east coast lows (Pepler et al. 2013). The Brown et al. (2009)
study showed the relationship between ENSO and smaller scale weather-type features that are

immediately related to rainfall in southern Australia. While the conclusions are suggestive of an
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important interaction between El Nifio events and changes in the STR, the study was limited to
only three cases. Further examination of this issue and relationships with other drivers such as

the IOD, using a more robust statistical approach is required.

This section has outlined the relationship between ENSO and rainfall variability in
Australia. Next in Section 2.3.1.d is a discussion of relationships between ENSO and Australian

hydrology.

2.3.1.d Impacts on hydrology

The previous section (Section 2.3.1.c) outlined the influence of ENSO on Australian
rainfall. This section follows on from the discussion of rainfall to explore the relationship
between ENSO and hydrology. As expected from the strong relationship between ENSO and
rainfall, ENSO also impacts the near surface hydrology in Australia (Power et al. 1999, Ralph
and Hesse 2010).The relationship is well established as El Nifio events are associated with
decreased water availability. Streamflow responds directly to ENSO variability, consistent with
the rainfall response to ENSO, with deficits beginning in June and continuing until the
following February. However, the peak drought response to ENSO occurs at a two — three

month lag as the rainfall deficit accumulates (Chiew et al. 1998).

River discharge, as measured at a stream gauge, is significantly higher during La Nifia
years (Ralph and Hesse 2010) and strong flooding has occurred in the MDB during La Nifia
events, particularly when the IPO is in the negative phase (Figure 2.11)
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Figure 2.11. Total annual discharge from the Macquarie River at Dubbo with
La Nina events marked (Ralph and Hesse 2010).

Upper level soil moisture levels can be assessed with passive microwave observations,
which can in turn be used to estimate lower level soil moisture, evapotranspiration and runoff
(Liu et al. 2009). The correlation between upper-layer soil moisture and the SOI (Figure 2.12,
middle) reaches a maximum in winter and spring over eastern and northeastern Australia (Liu et
al. 2009) and is similar to the rainfall relationship (outlined in previous sections and seen in the
left column of Figure 2.12),.This shows that upper-layer soil moisture responds directly to

changes in rainfall associated with ENSO variability. There is less understanding of how lower-
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layer soil moisture relates to ENSO, although the relationship is less widespread (Ummenhofer

etal. 2011).
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Figure 2.12. Seasonal correlation coefficients between the SOl and rainfall
(left), soil moisture (middle) and vegetation optical depth (right),
estimated from satellite data. Grey regions are significant at the 5%
level and black regions are significant at the 1% level (Liu et al.
2009).

This section (Section 2.3.1.d) has outlined the impacts of ENSO Australian hydroclimate
and the complexities associated with intrinsic non-linearities in both the ENSO system and
climate-hydrology interactions. The difficulties these non-linearities pose when understanding
ENSO impacts is emphasised. There are several key knowledge gaps that this research will fill.
Novel statistical methods will likely increase understanding of a complex multi-dimensional

system. In addition, while some research has examined the relationship between ENSO and
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smaller weather-scale features, there is a great deal of understanding that can be added here. The
importance of understanding interactions between large-scale modes has been touched on but
will be expanded upon in later sections. The next section will discuss how variability in the

Indian Ocean is related to Australian hydroclimate.

2.3.2 Indian Ocean variability

It has been shown how coupled ocean-atmosphere interactions in the Pacific Ocean result
in teleconnections to Australian hydroclimate. This section will shift focus to how the Indian
Ocean affects hydroclimatic variability in Australia. The mechanisms (Section 2.3.2.a) and
indices used to characterise Indian Ocean variability (Section 2.3.2.b) are discussed first,
followed by a summary of the impacts on Australian hydroclimate (Section 2.3.2.c) and the

interactions with ENSO (Section 2.3.2.d).

2.3.2.a Mechanisms

The 10D is a coupled ocean-atmosphere mode in the Indian Ocean broadly similar to
ENSO in the Pacific Ocean, but with smaller interannual variability (Baquero-Bernal et al.
2002, Saji et al. 1999, Verdon-Kidd and Kiem 2009a). There is a great deal of discussion into
whether an mode of variability from the Indian Ocean indeed exists that is independent of
ENSO and this debate will be discussed in Section 2.3.2.d; here the review is limited to

processes associated with Indian Ocean variability.

A positive (negative) IOD event (Figure 2.13) is characterised by warmer (cooler) SST
anomalies in the western Indian Ocean and cooler (warmer) SST anomalies in the eastern Indian
Ocean, which is associated with reduced (increased) rainfall in southern Australia (Japan
Agency for Marine-Earth Science and Technology 2008, Ummenhofer et al. 2009a, Verdon-
Kidd and Kiem 2009a). A positive IOD event begins during autumn when as intensified trade
winds lead to SST cooling in the eastern Indian Ocean, that combines with warm anomalies in
the western Indian Ocean (Behera et al. 2006); large-scale atmospheric circulation anomalies
accompany the SST anomalies through ocean-atmosphere coupling (Saji et al. 1999). A
positive 10D event can be triggered by a shallow thermocline from remote forcing, strong
easterly winds along the Java coast, or a combination of both factors that result in stronger
upwelling and cooler SST in the eastern pole of the IOD. The increased SST gradient created by
this process strengthens easterly winds, which in turn leads to increased SST cooling in the
eastern Indian Ocean. An IOD event ends when monsoon transition stops the easterly wind or
remote forcing increases thermocline depth (Meyers et al. 2007). During a positive event, cooler

SST anomalies around the maritime continent are associated with a reduction in convection with
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the centre of instability shifting to the western Indian Ocean with the positive SST anomalies.
The IOD is phased locked to a seasonal cycle that typically peaks in spring but can be seen from
May to November (Saji et al. 1999).

Figure 2.13. Typical SST anomalies and centres of convection for positive
(left) and negative (right) phases of the Indian Ocean Dipole (Japan
Agency for Marine-Earth Science and Technology 2008).

2.3.2.b Indices

This section will outline the main indices used to characterise Indian Ocean variability,
although more detail on each index used in this thesis is given in Chapter 3. The Dipole Mode
Index (DMI) is the principle index through which Indian Ocean Dipole (IOD) variability is
characterised. The DMI is the difference in SST anomalies between the western and eastern
Indian Ocean (Saji et al. 1999). In addition to the DMI, several other indices are used to
characterise Indian Ocean variability (Cai and Cowan 2008a, Nicholls 1989, Timbal et al.
2010). It has been shown that the northwest shelf region has significant correlations with
minimum temperature and rainfall in winter and spring (Timbal et al. 2010). SST in the Indian
Ocean region northwest of Australia are often used instead of the IOD as research has shown
this is the area important for the generation of northwest cloud bands which are the primary
mechanism through which the Indian Ocean affects Australia (Verdon-Kidd and Kiem 2009a).
Research has also pointed to a SST gradient between the maritime continent and the central
Indian Ocean that has a significant correlation (r = 0.75) with the first EOF of winter Australian
rainfall (Nicholls 1989). The Indonesian Throughflow (ITF) region (i.e. “Region C”, area-
averaged SST over 125° — 130°E and 2° — 7°S) has positive correlations with rainfall in
southern and eastern Australia (Cai and Cowan 2008a). SST anomalies in the ITF are linked to
ENSO variability and are one pathway through which the influence of ENSO is transmitted to
the Indian Ocean (Cai and Cowan 2008a, Meyers 1996). Many more indices are used to

characterise Indian Ocean variability compared to Pacific Ocean variability that stems from the
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smaller variability in the Indian Ocean. The impacts of various indices of Indian Ocean

variability on Australian hydroclimate over the instrumental record are discussed below.

2.3.2.c Impacts

Teleconnections from Indian Ocean variability have widespread impacts, particularly for
southern Australia. The Indian Ocean has been implicated in extreme climate periods over the
instrumental record, such as during WWII which was characterised by cooler SST around

northwest Australia (Verdon-Kidd and Kiem 2009a).

Variability in the Indian Ocean is associated with rainfall in the south and west of the
continent (Figure 2.14). The co-variability of ENSO and the IOD in time and space makes
separating influences difficult but even with the effects of ENSO removed a broad region in
southern Australia has significant correlations with the 10D (Risbey et al. 2009). Partial
correlation analysis showed that the influence of the Indian Ocean can be of a similar magnitude
to ENSO, although the limitations of partial correlation analysis, discussed below, must be kept

in mind.
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Figure 2.14. Correlation coefficients, over the period 1889 — 2006, between
the DMI and Australian rainfall for June — October (left) and the
partial correlation when the influence of ENSO has been removed
(right). Only correlations significant at the 5% level are coloured
(Risbey et al. 2009).

The SST anomalies in the northwest shelf region can alter the orientation of the sub-
tropical jet that influences the development, structure and position of synoptic systems over the
continent. The SSTs in this region may also play a role in directing moisture into synoptic
systems over the continent (Brown et al. 2009, Risbey et al. 2009). Negative 10D events are
associated with increased tropical-extratropical interactions that results in enhanced moisture
advection to SEA (Ummenhofer et al. 2009a) and increased incidence of northwest cloud bands

(Verdon-Kidd and Kiem 2009a).

Kirien Whan Chapter 2: Literature Review



30

This section has outlined the impacts of Indian Ocean variability on Australian rainfall,
including its seasonality. Research has shown the seasonal relationship between Indian Ocean
variability and Australian rainfall, but little has been done to explain interactions between the

IOD and smaller scale phenomena. The next section will discuss the interactions with ENSO.

2.3.2.d Interactions

This previous section outlined the various indices of Indian Ocean variability and
discussed the impacts that Indian Ocean variability has on Australian rainfall. This section will

discuss the complex interactions between the Indian and Pacific Oceans.

The two ocean basins have both statistical and physical relationships between ocean
variability, and their impacts on rainfall variability are often coincident (Meyers et al. 2007,
Risbey et al. 2009). Two pathways link the ocean basins. Firstly, a system of oceanic currents
from the Pacific Ocean to the Indian Ocean makes up the ITF, which is the primary mode of
meridional heat transport between the two oceans. The volume transported through the ITF
varies with ENSO, with more water transported during La Nifia as the easterly trade winds in
the Pacific Ocean lead to a build up of warm water in the western Pacific (Meyers 1996). The
second mechanism of interaction is the “Tropical Atmospheric Bridge” where atmospheric
anomalies in the maritime continent region that result from ENSO forcing then generate SST
anomalies in the Indian Ocean through surface heat and radiative fluxes (Lau and Nath 2003).
Both the oceanic and atmospheric pathways are likely vital for linking the basins with the

relative contributions of each pathway not fully understood.

Research has questioned the existence of the IOD as an independent mode of variability, as
the dependence (or independence) of the Indian to the Pacific Ocean has been the subject of a
great deal of debate. The debate stems from the use of EOFs to defining the mode as an artificial
example showed that a dipole pattern is commonly found in the second EOF due to the
orthogonality constraint, even though such a dipole mode does not actually exist in the data set
(Dommenget and Latif 2002). The first EOF of Indian Ocean SSTs accounts for 30% of the
variance. The strong correlation between this mode and ENSO suggests that it is the Indian
Ocean response to Pacific Ocean variability. The second mode, which is by construction
uncorrelated with the first, accounts for 12% of the variability and is characterised by the dipole
mode (Saji et al. 1999). The key for Australian rainfall variability is identifying which mode is
related to rainfall, the first mode that is associated with ENSO or the second mode that is

uncorrelated with ENSO.

In addition, it has been suggested that the close relationship between ENSO and the 10D

can be attributed to a co-occurrence of a few strong events, as ENSO variance is amplified

Kirien Whan Chapter 2: Literature Review



31

during co-occurring events while the IOD variance is attributable to pure IOD events (Saji and
Yamagata 2003). Further, the influence of the Indian and Pacific Oceans can be confused as
they both peak at the same time and both have large effects on hydroclimatic variability. Partial
correlation analysis suggests that both climate modes influence Australian climate, with the
influence of the IOD focused on southern and western Australian rainfall (Figure 2.14) and the
influence of ENSO focused over eastern and western Australia (Figure 2.15). The partial
correlation analysis that removes the variability associated with the IOD (Figure 2.14) shows

that the impacts of ENSO are associated with rainfall in northeastern Australia.
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Figure 2.15. Correlation coefficients, over the period 1889 — 2006, between
the Nifio 3 and Australian rainfall for June — October (left) and the
partial correlation when the influence of the DMI has been removed
(right). Only correlations significant at the 5% level are coloured
(Risbey et al. 2009)

Composite analysis for June — October rainfall shows that both drivers are important, while
the combined effect of both indices (Figure 2.16) is more severe than either on its own (Risbey
et al. 2009, Ummenhofer et al. 2011). Composite analysis of ENSO and IOD events showed that
the largest rainfall anomalies in southeastern Australia were produced by combined events,
showing the importance of interactions between the two Ocean basins. Combined positive IOD
and warm ENSO events resulted in a rainfall anomaly of -20mm/month, whereas combined
negative 10D and cool ENSO events produced a positive rainfall anomaly of +16 mm/month
(Ummenhofer et al. 2009a). The rainfall anomalies when ENSO and the IOD are in the same
phase are more widespread and spatially homogeneous. The spatial pattern of rainfall anomalies
in the El Nifio-only composite (Figure 2.16) extends much further south than the ENSO
correlation in the partial correlation analysis (Figure 2.14). This discrepancy on the influence of

ENSO between methods (composite, partial correlation) suggests further analysis is required.
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Figure 2.16. Composite June — October rainfall anomalies (mm) in

The mechanism through which the tropical modes of variability influence Australian
rainfall varies seasonally (Cai et al. 2011b). In JJA, the impacts of the IOD and ENSO are
considered separately (Figure 2.17). El Nifio influences northern Australia through the direct
response of rainfall to subsiding air motions in the tropics, as part of the western pole of the
Southern Oscillation. The impact of the IOD on southern Australia occurs through an equivalent
barotropic Rossby wave train (the east Indian Ocean wave train) emanating from the eastern
equatorial Indian Ocean, resulting in an equivalent barotropic ridge over southern Australia. In
SON (Figure 2.17), the tropical modes of variability cannot be separated but the Pacific South
American wave train from the Pacific Ocean and is combined with wave trains emanating from

the eastern and western Indian Oceans with a common centre over southern Australia (Cai et al.

2011b).

combinations of ENSO and 10D phases for years during the period
1900 — 2006. Anomalies significant at the 20% level are coloured
(Ummenhofer et al. 2011).
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Figure 2.17. Schematic of the typical wave trains associated with a) the IOD
and b) ENSO for JJA and c) for the IOD and ENSO combined in
SON. These are the typical wave trains during the positive phase of
each mode. Shaded blue (red) regions indicate increased
(decreased) tropical convection. Blue (red) contours indicate
anomalously low (high) upper-level heights. The dashed lines
indicate the wave trains: grey is the East Indian Ocean wave train,
green is the West Indian Ocean wave train and orange is the
Equatorial African wave train (Cai et al. 2011b).

Recent research has taken a more holistic view of tropical influences on Australia
hydroclimatic variability (Cai et al. 2011b, Meyers et al. 2007, Timbal and Hendon 2011). The
importance of focussing on interactions over the whole Indo-Pacific basin, rather than one basin
separately is emphasised as the combined effect of SST anomalies in both ocean basins is
greater than either one alone (Figure 2.16). A tri-pole index (TPI) was constructed based on the
equatorial SST regions that had the largest correlation with southeast Australian rainfall (Figure
2.18). Both ENSO and IOD variability contributes to the TPI and, due to its definition,
correlations between the index and southeast Australian hydroclimatic variability exceeds both
traditional indices (Timbal and Hendon 2011), essentially circumventing the IOD independence
debate and focusing on variability in the tropical regions that are most relevant to SEA.
Southeastern Australian rainfall and the TPI co-vary on interannual and decadal time scales,
consistent with the strong relationship between the tropical oceans and Australian hydroclimates

(Timbal and Hendon 2011).
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Figure 2.18. Standardised 11-year running mean of spring southwest eastern
Australian rainfall (green solid), northern MDB rainfall (green
dashed) and the TPI (black). Standardised using the mean and
standard deviation over the period 1900 — 2009 (Timbal and
Hendon 2011).

This section has shown that the Indian Ocean has significant relationships with Australian
hydroclimatic variability. The importance of a holistic approach to understanding the
hydroclimatic response to tropical forcing was emphasised due to interactions between ENSO
and the IOD. Next, in Section 2.3.3, the focus will shift to discussion of the sub-tropical ridge

and its impacts on Australia.

2.3.3 Sub-tropical Ridge

Previous sections have shown that the tropical oceans have strong relationships with
hydroclimatic variability in Australia. This section will discuss the importance of sub-tropical
variability southern Australia. The sub-tropical ridge (STR) is the downward branch of the
Hadley Cell and is located at approximately 30°N/S (Peixoto and Oort 1992). The position and
intensity of the STR are two facets that influence Australian climate and will be discussed in

Sections 2.3.3.a and 2.3.3.b.

2.3.3.a Sub-tropical Ridge Position

The position of the STR refers to the mean meridional location of the STR which is
furthest north in August/September (29°S, Figure 2.19). The STR adheres to a seasonal cycle
driven by variability in the location of maximum surface heating that controls the Hadley Cell.
In summer when the location of maximum surface heating reaches its southerly maximum over
northern Australia, the STR also moves south reaching a mean latitude of 40°S in February

(Drosdowsky 2005, Timbal and Drosdowsky 2013). This movement of the STR controls
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seasonal rainfall variability defining winter rainfall zones in southern Australia. When the STR
is at its northerly maximum, a westerly airstream with embedded cold fronts is able to pass over
southern Australia bringing rainfall to the region (Drosdowsky 2005). In summer when the STR
is at higher latitudes, cold fronts are pushed south and miss continental Australia and there is
increased rainfall down the east coast associated with enhanced on-shore, moisture laden winds

(Pittock 1975).
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Figure 2.19. Monthly averaged STR intensity (hPa, horizontal axis) and
position (degrees south, vertical axis) showing the annual cycle
over the period 1900 — 2009 (Timbal and Drosdowsky 2013).

The position of the STR can be calculated from a variety of data sources including
extrapolated station data and reanalysis products (Drosdowsky 2005, Williams and Stone 2009).
All indices are highly correlated and the annual cycle is robust (Drosdowsky 2005, Timbal and
Drosdowsky 2013) but the relationship with rainfall is somewhat sensitive to the choice of the
dataset (Williams and Stone 2009), likely due to differences in the mean position of the STR
between datasets. STR position has statistically and physically significant relationships with
rainfall on a seasonal basis (Drosdowsky 2005, Williams and Stone 2009) as it is a proxy for
monthly climatology of the mid-latitude and sub-tropical synoptic-scale features. This is
indicated by the relationships between STR position and maximum temperatures, zonal westerly
winds, meridional wind and mean air temperature and ozone; and on a seasonal basis with snow
depth, zonal westerly winds and coastal rain (see Williams and Stone, 2009 and references
within).

Trends in the STR position time series can be up to 2° over the instrumental record but

they are seldom significant due to the highly variable record (Timbal and Drosdowsky 2013).
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The most significant trends in STR position are a northward trend in summer and June and a
southwards trend in May (Williams and Stone 2009), although there is little confidence in
reanalysis products in the southern hemisphere before the introduction of satellites in the 1970s,
and other research using station data has failed to find a trend in STR position (Drosdowsky
2005). The poleward shift of the latitude of STR in May fits in with the general expansion of the

Hadley Cell (Seidel et al. 2007), and also with the rainfall decline in late autumn-early winter.

Spatial correlation patterns between the STR position and Australian rainfall suggest that
up to 60% of rainfall variability can be accounted for by STR position variability, as the latitude
of the STR effects the position of both westerly and easterly moisture sources (Williams and
Stone 2009), but this work doesn’t account for the correlation between STR position and
intensity (Timbal and Drosdowsky 2013). From March-April-May (MAM) to October-
November-December (OND) the correlation between gridded rainfall and STR position is
negative across southeast Australia and southwest Western Australia (Figure 2.20) showing that
as the STR moves further south rainfall decreases. The orographic effect of the Great Dividing
Range (GDR) can be seen in the positive correlations present on the eastern coastal strip in all
seasons. This shows that when STR position is further south rainfall on this coastal strip
increases as the anti-cyclonic cell increases onshore flow (Timbal and Drosdowsky 2013). The
correlation between MAM rainfall and STR position show how the mean position of the STR is
important in the season when the STR is transitioning from its southerly to northerly maximum
(Figure 2.20). The relationship is positive in central and northern Australia because as STR
position moves south, rainfall increases due to increased meridional pressure gradient and
tropical interactions. Conversely, the relationship is negative in Victoria because these systems
are pushed further south when the STR moves poleward. Understanding the relative impacts of
STR position and intensity is difficult with linear statistics as they are highly correlated. For
example, while STR position alone is found to have a significant impact on rainfall, no
additional impact can be found when it is combined with STR intensity. This suggests that the
linear correlation between the two variables causes the significant contribution for STR position
alone (Timbal and Drosdowsky 2013). This highlights the difficulty in assessing relationships

between highly correlated predictor variables and rainfall.
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Figure 2.20. The annual cycle of the correlations between STR position and
Australian rainfall in the 12 x three-month sliding seasons (e.g.
JFM, FMA...DJF), over the period 1900 — 2009 (adapted from Timbal
and Drosdowsky, 2013)

The typical synoptic system affecting southeast Australia have changed since 1993.
Analysis using self-organising maps shows there are systems representing a stronger STR
located further south, preventing cold fronts from passing over the region and a reduction in rain
bearing pre-frontal troughs (Kiem and Verdon-Kidd 2010, Verdon-Kidd and Kiem 2009a). STR
position is essential in the formation of cut-off lows; a weather system that bring a large
proportion of rainfall to southeastern Australia. Preceding this type of wet case was a high-
pressure cell off the east coast, directing moist air into the cut-off low. Drier cases occurred
when the STR is too far east, west or south, showing the importance of the STR position

(Brown et al. 2009).
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This section has introduced the concept of STR position and discussed the relationship
between STR position and rainfall. Broadly, the relationship between shifts in the Hadley Cell
and rainfall is well understood. Yet the lack of relationship once STR intensity is accounted for
confounds the issue and shows that significant correlations between predictor variables are not
well accounted for using linear statistics. In addition, there is limited research into the
relationship between the STR and large-scale climate drivers such as ENSO. The next section

will discuss STR intensity.

2.3.3.b Sub-tropical Ridge Intensity

The majority of research has focused on how STR position influences climate in southern
Australia. Recent research, however, has shown the importance of STR intensity for rainfall in
southern Australia, linking rainfall declines to the weakening in the dominant westerly air
stream associated with increased STR intensity (Timbal 2009, Timbal and Drosdowsky 2013).
STR intensity adheres to a seasonal cycle, reaching a mean maximum of approximately 1022
hPa in May — August and a minimum of 1013 hPa in December (Figure 2.19). STR intensity is
strongest in winter when the STR is located over the Australian continent and it is weakest in

summer when the STR is positioned at higher latitudes.

The correlation between STR intensity and climatic variability is negative because high
MSLP is associated with a stable subsiding atmosphere that results in lower rainfall and higher
temperatures. Negative correlations with rainfall can be seen from April-May-June (AMJ),
peaking in May-June-July (Figure 2.21), and decaying into OND (Timbal and Drosdowsky
2013). The relationship between STR intensity and rainfall is more widespread and significant

compared to the relationship with STR position.
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Figure 2.21. The annual cycle of the correlations between STR intensity and
Australian rainfall in the 12 x three-month sliding seasons (e.g.
JFM, FMA...DJF), over the period 1900 — 2009 (adapted from Timbal
and Drosdowsky, 2013).

While trends in the STR position series were unclear, increases in STR intensity are

significant (Drosdowsky 2005, Timbal and Drosdowsky 2013). Trends in all monthly and

annual mean are positive, between 1 — 2.5 hPa for months when the relationship between STR

intensity and southeast Australian rainfall is the strongest (Timbal and Drosdowsky 2013).

Research on the relationship between STR variability and southern Australian rainfall has been

limited to methods using linear statistics (Timbal and Drosdowsky 2013).

Section (2.3) has outlined the remote and region modes of large-scale climate variability,

including the STR and the tropical modes (ENSO and the IOD). The seasonality of the climate

drivers and the nature of relationships with Australian hydroclimate were outlined. Strong
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relationships between climate drivers inhibit understanding of relative influences. Next is a

discussion of the predictability of Australian hydroclimatic variability.

2.4 Predictability of Australian hydroclimatic variability

Section 2.3 summarised the relationship between Australian hydroclimate and large-scale
modes of climate variability. This section will discuss sources of potential predictability, as
seasonal to interannual prediction of hydroclimatic variability is vital for natural resource
management. In particular, hydrological seasonal forecasts could help water managers make
decisions related to water allocations while agricultural managers could better manage risk
(Kirono et al. 2010, Wang et al. 2009). The main source of Australian seasonal predictability
comes from the relationship between ENSO and rainfall variability and this is the basis seasonal
forecast issued operationally by the Australian Bureau of Meteorology (Chiew et al. 1998,
Doblas-Reyes et al. 2009, Kirono et al. 2010).

Correlations between seasonal Australian hydroclimate and indices of tropical modes of
variability from preceding months (‘lagged correlations’) can be used to assess forecasting
potential (Chiew et al. 1998). Lagged correlations stem primarily from the persistence of the
large-scale tropical modes of variability from their onset in winter, this is evident in Figure 2.9
for the SOI and the effect is exaggerated in the SST-based indices. Maximum predictability
occurs in spring when correlations between rainfall and indices of ENSO, particularly the
oceanic indices, at several months lead-time exceed that of persistence (Figure 2.22). The
correlation coefficients between station rainfall data and ENSO exceed 0.4 in several locations
in eastern Australia up to three months in advance. The relationship between the SOI and
rainfall is stronger than the SST index for the one and two month lag, but at the longer lead-time
the SST index surpasses the SOI (Chiew et al. 1998). The predictability stems from ENSO’s
persistence, adherence to a seasonal cycle and from the slowly varying nature of the ocean. This
simple relationship is the basis of the majority of seasonal climate forecasts in Australia

(Drosdowsky and Chambers 2001).
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Figure 2.22. Correlation between spring station rainfall (stations shown in
top left) and rainfall (left), the SOI (middle) and eastern Pacific
SSTs (right) (Chiew et al. 1998).

The lagged relationship between seasonal rainfall and a wide range of predictor variables,
averaged over the preceding two months, was examined (Kirono et al. 2010). The strongest
relationship was found between spring rainfall with Nifio 4 and the thermocline in July —
August, although significant relationships were also found with the SOI, Nifio 3, an Indonesian
Index (120 - 130°E, 10°S — Equator), the western pole of the IOD and the first principal
component of SST over both the Indian and Pacific Oceans. The same variables were important
for summer rainfall with the exception of the western pole of the IOD and the Indonesian Index.
Autumn and winter rainfall was only significantly related to the thermocline (Kirono et al.

2010).

Lagged correlations are also found between ENSO and hydrological variability. The
predictor variables that have the strongest relationships with climate data tend to also be the
variables that have strong relationships with hydrological variability (Kirono et al. 2010).
Lagged correlations between lower level soil moisture and the SOI over the period 1955 — 2006
for various drainage divisions (often referred to as ‘regions’ in subsequent chapters) in eastern
Australia (Figure 2.23) show stronger correlations for lower level soil moisture (r = -0.5) than

for rainfall (r = -0.3 — -0.4). The peak correlation occurs when the SOI leads soil moisture by
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approximately 3-months while the maximum rainfall correlation was simultaneous (Raupach et
al. 2008). This shows that the relationship between ENSO and lower level soil moisture is

enhanced compared to rainfall and that there is potential for greater predictability.
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Figure 2.23. Lagged correlations between monthly SOl and lower level soil
moisture (soil moisture > 0.2m) over drainage divisions in eastern
Australia, over the period 1955 — 2006. See Chapter 3 for definitions
of Australian drainage divisions (Raupach et al. 2008).

In southeastern Australia, spring streamflow is strongly correlated with the SOI, while
during summer these strong correlations are confined to the east coast (3-month lag) and
northeast coast (1-month lag) (Chiew et al. 1998). Streamflow and runoff shows greater
persistence than rainfall, with the lagged correlation between streamflow and antecedent
streamflow exceeding the correlation with ENSO (Figure 2.24). This results from a memory in
the hydrological data due to hydrological processes such as groundwater storage. This shows
that spring runoff in southeastern Australia can be forecast with up to 3-months in advance from
both the SOI and from streamflow data in previous months (Chiew et al. 1998). The serial
correlation between antecedent runoff is strongest with winter and spring runoff and is a better
predictor of runoff during these max flow periods than the large-scale modes (Figure 2.24)
while climate predictors have a strong relationships with runoff in spring and in summer.
Summer is particularly interesting as a relationship is evident between the climate predictors
and runoff that is not found with rainfall, showing that the ENSO — rainfall relationship is
magnified in the hydrological variables in some seasons. This is likely due to non-linearities in
the rainfall — runoff relationship and other hydrological processes such as infiltration,
evaporation and storage (Kirono et al. 2010). Examination of longer lead-times suggests that the
relationship with large-scale modes and antecedent runoff decreases as the lead-time increases,
and that the runoff serial correlation weakens at a greater rate than the correlation with large-

scale modes (Kirono et al. 2010).
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Figure 2.24. The correlation between seasonal runoff (MAM, JJA, SON, DJF)
and antecedent runoff from the previous two months (JF, AM, JA,
ON) (top) and the best climate predictor (bottom) using absolute
values of the correlation coefficient, over the period 1950 — 2006
(Kirono et al. 2010).

Globally, operational meteorological centres make seasonal climate predictions by using
statistical or coupled dynamical models (Doblas-Reyes et al. 2009, Drosdowsky and Chambers
2001, Goddard et al. 2001). Uncertainty from dynamical models comes from several sources
including those related to initial conditions, model formulation and parameterisation (‘tuning’ to
the current climate) and from the failure of climate models to simulate every aspect of climate
dynamics (Doblas-Reyes et al. 2009). Statistical models require long records and a stationary
climate for effective forecasting (Chiew et al. 1998). Seasonal forecasts using dynamical models
are increasingly utilised, as statistical models will struggle to capture climate variability under
future climate change scenarios. Yet statistical models are still a computationally inexpensive
method to explore relationships and increase understanding of the predictability of

hydroclimatic variability.

Statistical models, based on relationships between large-scale climate modes and
hydroclimatic variability are used to make operational hydrological forecasts. A Bayesian joint
probability modelling approach to forecasting seasonal streamflow at has been successfully
implemented. The joint distribution of future stream flows and predictor variables including
ENSO and antecedent rainfall anomalies are modelled. Cross validation results showed that
forecasts with this method are of high quality and are free from bias (Wang et al. 2009) Spring
streamflow, predicted from antecedent climate (i.e. SOI) and catchment conditions in August,
for three gauges in southeastern Australia shows high skill with skill scores over 30%with
scores greater than 10% defined as showing good skill (skill is defined with by a linear error in

probability space score that has been adapted to probabilistic forecasts) (Wang et al. 2009).
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This section has outlined the sources of potential predictability for Australian climate and
hydrology and some techniques currently used for forecasting in Australia. Dynamical and

statistical techniques are both useful and effective in forecasting.

2.5 Summary and conclusions

This chapter served as an introduction to the major features of Australian hydroclimatic
variability and to the climate drivers that will be used in this thesis. It has outlined the current
state of Australian hydroclimatic variability and discussed the interactions between climate and
hydrology (Section 2.2). The main drivers of Australian climate were outlined and their impacts
and interactions discussed (Section 2.3), along with sources of predictability of Australian

climate (Section 2.4). Key gaps in the literature were noted throughout the chapter.

Next, in Chapter 3, is a discussion of the data sets and methods used throughout this thesis.
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Chapter 3 : Data sets and Methods

3.1 Chapter summary and context

This thesis aims to increase understanding of interactions between large-scale modes of
climate variability that influence Australian hydroclimatic regimes. This chapter provides an
overview of all the data sets (Section 3.2) and a description of the tree-based models and other
methods used throughout this thesis in Section 3.3. In subsequent chapters (Chapters 4 — 7), the

specific data sets and methods used for that section of the analysis is briefly outlined.

3.2 Data sets

This thesis aims to increase understanding of interactions between large-scale modes of
climate variability that influence Australian hydroclimatic regimes by using correlation and
tree-based models. There are several data sets central to this analysis that span the period 1900 —
2009, including a suite of predictor and response variables used to define the relationships
between climate drivers and hydroclimatic regimes. In addition, re-analysis products are used to

characterise the atmospheric circulation in each of the hydroclimatic regimes.

First, in Section 3.2.1, is a description of the predictor variables used in this research, i.e.
the indices of large-scale modes of climate variability (ENSO, IOD, STR). Secondly, in Section
3.2.2, is a description of the rainfall and soil moisture data that are used as response variables.

Finally, Section 3.2.3 describes the two reanalysis products used in this thesis.

3.2.1 Predictor variables

The 14 indices of large-scale modes of climate variability used as predictor variables in
this thesis are summarised in Table 3.1, and described in further detail below (Sections 3.2.1.a —
3.2.1.h). All 11 oceanic indices (Nifio 3, Nifio 3.4, Nifio 4, the EMI, Region C, the Tri-pole
index, Nicholls’ SST gradient, the NWS and three indices of the IOD) are calculated by
spatially aggregating SST anomalies in specific regions of the Pacific or Indian oceans from the
monthly gridded (1° resolution) HadISST data set (Rayner et al. 2003). In addition to these nine
oceanic indices, three atmospheric indices (SOI, STR-I and STR-P) are calculated from monthly
mean-sea level pressure data sets provided by the Australian Bureau of Meteorology. All
monthly indices are then averaged over 12 three-month seasons (e.g. JFM, FMA...DJF), with
the focus generally on the traditional seasons (MAM, JJA, SON, DJF) throughout the analysis.
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Anomalies are calculated against the full record (1900 — 2009). The linear trend is removed

from predictor variables in Chapters 4, 5 and 7.

Table 3.1. Indices of large-scale modes of climate variability used in this

thesis.

Name Group Reference
Nifio 3 Pacific Ocean (Trenberth 1997)
Nifio 3.4 Pacific Ocean (Trenberth 1997)
Nifio 4 Pacific Ocean (Trenberth 1997)

El Nifio Modoki Index (EMI)
Southern Oscillation Index (SOI)

Tri-pole Index (TPI)
Region C

Nicholls” SST gradient
Northwest Shelf (NWS)
Dipole Mode Index (DMI)
DMI - Eastern Pole

DMI — Western Pole

STR — Intensity

STR — Position

Pacific Ocean
Pacific Ocean

Pacific and Indian Ocean

Indian Ocean
Indian Ocean
Indian Ocean
Indian Ocean
Indian Ocean
Indian Ocean

STR

STR

(Ashok et al. 2007)

(Troup 1965)

(Timbal and Hendon 2011)
(Cai and Cowan 2008a)
(Nicholls 1989)

(Timbal and Murphy 2007)
(Saji et al. 1999)

(Saji et al. 1999)

(Saji et al. 1999)

(Drosdowsky 2005, Timbal and
Drosdowsky 2013)
(Drosdowsky 2005, Timbal and
Drosdowsky 2013)

3.2.1.a Indices of ENSO (Nino 3, Nifio 3.4, Nifio 4, EMI)

Three oceanic indices of ENSO are defined by area-averaging monthly SST anomalies in

regions of the central and eastern Pacific Ocean (Trenberth 1997, Trenberth and Stepaniak

2001) , all spanning latitudes 5°S — 5°N. The Nifio 3 index is defined from SST anomalies in
the region 150° — 90°W, Nifio 4 is defined from SST anomalies in the region 160°E — 150°W

and Nifo 3.4 straddles the two regions (Figure 3.1).

The El Nifio Modoki index represents a relatively new type of ENSO event that has

warming centred in the central equatorial Pacific Ocean, rather than in the eastern Pacific during

a traditional El Nifo event. It is defined as the second empirical orthogonal function (EOF) of

tropical Pacific SST anomalies which define 12 % of the variance (Ashok et al. 2007).
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Figure 3.1. Area-averaged SST anomalies in the Nino 3, Nino 3.4 and Nino 4
regions that are used in this thesis to define the oceanic indices of
ENSO. Picture from (National Climate Data Centre 2013).
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Figure 3.2. The top two EOF modes of tropical Pacific SST anomalies (1979 —
2004) multiplied by their respective standard deviations of principal
components (°C), that explain a) 45% and b) 12% of the variance
(Ashok et al. 2007).

3.2.1.b The ‘Region C’ index

‘Region C’ is a small area-averaged SST box in the Indonesian Throughflow region. It is
the spatially aggregated SST anomalies in the region: 125° — 130°E and 2° — 7°S (Figure 3.3).
SST anomalies in Indonesian Throughflow region are associated with ENSO and eastern Indian
Ocean variability and has significant correlations Victorian rainfall in May (Cai and Cowan
2008a).
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Figure 3.3. The correlation between Victorian rainfall and sea-surface
temperature (coloured) and vector wind anomalies in May. Region
C is the area-averaged SST anomalies in the white box (125° -
130°E and 2° - 7°S) (Cai and Cowan 2008a).

3.2.1.c The Tri-pole index

The Tripole Index (TPI, Figure 3.4) captures variability from the maritime continent and
the Indian and Pacific Oceans by combining area-averaged SST anomalies in three regions. It
captures variability from both ENSO and the IOD. The index subtracts the average of an eastern
box from the Pacific Ocean (a blue trapezium in Figure 3.4: from 15°N — 15°S and from 150°E
— 140°W at the northern edge and 180°E — 140°W at the southern edge) and a western box from
the Indian Ocean (a blue square in Figure 3.4: 10°N — 20°S and 55° — 90°E) from the central
box (a red parallelogram in Figure 3.4: extending from 0° — 20°S and from 90° — 140°E at the
equator and 110° — 160°E at the southern edge) (Timbal and Hendon 2011) .
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Figure 3.4. Map of the significant correlations between southeast Australian
rainfall (grey shaded region) and SST anomalies over the period
1900 - 2009. The boxes used to define the Tripole Index (TPI) from
Timbal and Hendon, 2011. The index is the difference between the
mean of the SSTs in the central red box minus the average of the
mean of the two blue boxes in the Indian and Pacific Oceans
(Timbal and Hendon 2011)

3.2.1.d Indices of the Indian Ocean Dipole

The Dipole Mode Index (DMI, Figure 3.5) is the most commonly used index of Indian
Ocean variability. It is defined as the difference between SST anomalies in the eastern (90° —
110°E and 10° — 0°S) and western (50° — 70°E and 15°S — 10°N) Indian Ocean (Saji et al.
1999). It has been suggested that variability in the eastern Indian Ocean is more important to the
impacts on Australia than the western Indian Ocean (Meyers et al. 2007) and so each pole is

used as a predictor variable individually, in addition to the DML

0'E B0°E 50°E

Figure 3.5. The SST anomalies in 1997 (a positive DMI year) with the western
and eastern poles of the Indian Ocean Dipole marked (Australian
Bureau of Meteorology 2013a).

3.2.1.e The Nicholls’ SST gradient

The 10D is the most commonly used index of Indian Ocean variability. However, before
the IOD was defined Nicholls (1989) described a gradient between two area-averaged SST
regions 1) 120° — 130°E and 10°S — 0°, and 2) 80° — 90°E and 20° — 10°S that captured similar
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variability to the IOD. The correlation between the gradient and Australian winter rainfall is not
weakened by removing the effect of the SOI, suggesting it is independent of ENSO (Nicholls
1989).

3.2.1.f Northwest Shelf Index

The Northwest Shelf index is an area-averaged SST anomaly index over the region 100°—

130°E and 20°— 5°S. It has been used previously as an index of the eastern pole of the IOD
(Timbal and Murphy 2007). The index has been shown to have significant correlations (10%

level) with rainfall in western, central and eastern Australia in JJA (Timbal and Murphy 2007).

3.2.1.g The Southern Oscillation Index

The Southern Oscillation index is a measure of the atmospheric component of ENSO. It is
the difference between the standardised anomalies of mean-sea level pressure at Darwin and

Tahiti (Troup 1965).

3.2.1.h Indices of the sub-tropical ridge

Finally, two indices are used to characterise the sub-tropical ridge (STR). The STR
intensity and position indices are calculated as the station-based ‘L-index’ (Drosdowsky 2005).
The indices are based on monthly mean-sea level pressure station data between 10 and 44°S
along the eastern Australian coast. The station data are interpolated to a 1° grid and averaged
within a 5° longitude band around 150°E. The location of the maximum in pressure within that

band gives the position of the STR, as well as the intensity of that maximum.

3.2.2 Response variables

Gridded monthly hydroclimatic data are spatially and temporally aggregated. Seasonal
averages are calculated from the gridded monthly data for all 12-three month seasons (e.g. JFM,
FMA...DJF) for the Australian continent, with the focus generally on the four traditional
seasons (MAM, JJA, SON, DJF). Anomalies are calculated against the full record (1900 —
2009). Detrended data is used in Chapters 4, 5, and 7. Hydroclimatic data from 1900 — 2009 are
analysed using the Australian Water Availability Project (AWAP) data set (Jones et al. 2009,
Raupach et al. 2008) which was developed to monitor the terrestrial water balance of Australia.
Hydrological research is often confined by availability of stream gauge data and climatic
research is somewhat bound by the availability and quality of station data (although now several
products exist that extrapolate the station data to a gridded product (Jones et al. 2009). The

AWAP data set fills an important niche for hydrological data by providing a gridded dataset for
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the Australian continent from 1900 to the present, at a relatively high resolution of 0.05°
(approximately 5 km), allowing both climatological and hydrological information to be

considered across the whole landscape.

The AWAP data include soil moisture and all water fluxes that contribute to soil moisture
(i.e. rainfall, transpiration, soil evaporation, surface runoff and deep drainage); meteorological
data (such as rainfall and temperature); both upper (0 — 0.2m) and lower-layer (0.2 — 1.5m) soil
moisture (derived from information about soil properties used as inputs to a hydrological
model); and transpiration, evaporation and local discharge (surface runoff and deep drainage)
(Raupach et al. 2008, Timbal et al. 2009). The focus in this thesis is on rainfall and upper and

lower-layer soil moisture.

While many analyses presented in this thesis are continental in scale, the focus for
interpretation is generally on southern and eastern Australia, as these are important food
production regions which are reliant on hydrological resources (Cai et al. 2009a). A further
consideration is that data quality in western Australia is often limited (Figure 3.6) due to the
sparse observational data network in the region (Ummenhofer et al. 2011). Analysis of the
ability of the data set to capture the intensity of rainfall extremes is limited in the data sparse
regions (King et al. 2013). This work is focused on terciles of hydroclimatic regimes, rather
than on extremes, yet drainage divisions in the data sparse regions are not used (e.g. the Western

Plateau (National Land and Water Resources Audit 2001)).

(b) Data quality
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Figure 3.6. AWAP data quality map with black (white) areas being 100%
unreliable (reliable with in the bounds of the interpolation scheme),
blue areas should be treated with caution (Ummenhofer et al.
2011).

Time series analysis is conducted using gridded rainfall and upper-layer and lower-layer
soil moisture data spatially aggregated for 12 regions (Table 3.2, Figure 3.7 and Figure 3.8) of

Australian drainage divisions (National Land and Water Resources Audit 2001). However it
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should be noted that drainage divisions do not always align with rainfall regimes. For example,
the SEC region stretches from Victoria to the Queensland boarder and is likely under the
influence of multiple mechanisms. These area-averaged time series were used in both

continuous and categorical (converted to terciles) form during various phases of the analysis.

Table 3.2. Names, abbreviations for each of the 12 regions (drainage
divisions) used as response variables.

Chapter Drainage Division (Abbreviation) Region Number
Timor Sea (TiS) 1
Gulf of Carpentaria (GoC) 2
Northeast Coast — Sea (NECS) 3a
Northeast Coast — Burdekin/Fitzroy (NECBF) 3b
Murray-Darling Basin Agricultural (MDBA) 4a
Murray-Darling Basin Semi-Arid (MDBSA) 4b
Chapters 5 and 7 Murraz-Darling Basin Wet (MDBW) 4c
Southeast Coast (SEC) 5
Tasmania (Tas) 6
South-Australian Gulf (SAG) 7
Southwest Coast (SWC) 8
Indian Ocean (10) 9
Chapter 4 Murray-Darling Basin (MDB) —4a + 4b + 4c NA
Chapter 6 Southwest eastern Australia (SEA) NA

A region defined as the southwest of eastern Australia (SEA) is used in the analysis of
interactions between sub-tropical ridge intensity and position (Chapter 6). The time series for
this region are calculated by averaging values within the region for which STR intensity
explains over 20% of the rainfall variability and covers approximately the area to the south-west
of a line running from Melbourne to the south of the Flinders ranges and following the end of
the Great Dividing Range (GDR) over western Victoria (Figure 3.7, see Timbal et al., 2010 for

detail about the construction of the SEA time series).
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Figure 3.7. The hatched region is southwest eastern Australia. Elevations are
shown by colour shading (every 500m). (Timbal and Hendon 2011).

The remaining 13 regions (Table 3.2 and Figure 3.8) used in Chapters 4, 5 and 7 (Region
numbers 1 — 9) are based on Australian drainage divisions (often referred to as ‘regions’ in later

chapters) (National Land and Water Resources Audit 2001).
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NECS NECBF SEC TAS MDBW MDBAMDBSA SAG SWC 10 TiS GoC NA

Figure 3.8. The 12 Australian drainage divisions that are area-average and
used as response variables in Chapters 4, 5 and 7. The whole MDB
region used in Chapter 4 is the sum of MDBW (pink), MDBA
(maroon) and MDBSA (red). Table 3.2 for the names of the
regions/drainage divisions.

3.2.3 Reanalysis products

Two re-analysis products are also used to assess the atmospheric response in hydroclimatic
regimes. Firstly, The National Centers for Environmental Prediction / National Center for
Atmospheric Research (NCEP/NCAR) Reanalysis product (Kalnay et al. 1996) was used for the
analysis in Chapter 6. A limitation of the NCEP/NCAR reanalysis product has been is that it
was only available from 1948; this limitation was overcome in 2011 when the 20™-Century
Reanalysis Project (20CRv2) (Compo et al. 2011) was released, providing atmospheric
information from 1871. The ensemble mean of the 20CRv2 was used in subsequent phases of
the analysis (i.e. results presented in Chapter 5). This reanalysis product relies only on surface
observations, that are limited at higher latitudes and in the early part of the record. However,
atmospheric circulation in this product is well captured compared to NCEP2 and a gridded sea-
level pressure data set (Fan and Liu 2013). The largest discrepancy from observed sea-level

pressure is early in the record (< 1920). Although circulation features such as the SH subtropical
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high, the Antarctic Oscillation and the Pacific-South-America pattern are well reproduced (Fan

and Liu 2013).

3.3 Methods

Section 3.3 provides an overview of the key analytical methods used in Chapters 4 — 7,

including an introduction to the CART and Random Forests techniques.

3.3.1 Linear analysis (Chapter 4)

Pearson’s correlation coefficients between large-scale modes of climate variability and
several hydroclimatic parameters are calculated from the seasonally averaged rainfall and soil
moisture data for the Australian continent (0.05° grid). Pearson’s correlations statistically

significant at the 5% level are coloured.

3.3.2 Classification Tree analysis (Chapters 5 — 6)

This section will discuss some previous research using Classification and Regression Trees
(CART) and provide a brief introduction to the method. CART is a statistical method that is
widely used in the data mining and machine learning communities (Firth et al. 2005, Prasad et
al. 2006). The method classifies response variable data from relationships with predictor
variables. There are similarities with a self-organising map (SoM) approach, which is more
widely used in climatic research (Alexander et al. 2010, Hope et al. 2006). Both methods create
nodes based on similarities between cases. The SoM method uses the shortest Euclidian
distance between cases to match each case to a particular node. The relationships between the
resultant nodes and large-scale climate drivers can then be assessed with a correlation analysis.
Conversely, a CART analysis uses the relationship between the large-scale climate drivers and
response variables to classify nodes (often referred to as ‘regimes’ in this thesis). There are
strengths and limitations to each method. For example, a SoM approach is likely to create more
homogenous nodes but the relationship between these nodes and climate drivers is less obvious.
In addition, while the CART approach ensures each node has a particular relationship with the

climate drivers, the homogeneity of the nodes is not ensured.

Tree-based models may be constructed using either continuous (regression trees) or
categorical (classification trees) response data. As such, CART is a set of statistical techniques
comprising both ‘classification trees’ and ‘regression trees’. There are no restrictions on the
format of predictor variables, although in this research all predictor variables are continuous.
Throughout this thesis, classification trees (constructed from tercile data) are primarily used,

with a comparison of the two types of trees in Chapter 5.
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CART is a non-parametric, binary, recursive tree-growing algorithm developed by
(Breiman et al. 1984) that presents relationships between predictor and response variables in the
form of ‘decision trees’, so that variability in a single response variable is explained by one or
more predictor variables. These decision trees define a set of IF-THEN rules that divide cases of
response variables into increasingly homogenous groups based on the corresponding levels of
predictor variables (Burrows et al. 1995, Cannon et al. 2002, De'ath and Fabricius 2000,
Rodionov and Assel 2000). A tree comprises of several ‘leaves’ or ‘nodes’. A node is ‘terminal’
when there are no further splits. CART is robust to outliers and extreme values among predictor
variables as the technique generally tries to allocate divergent cases to separate nodes

(Rodionov et al. 2001).

As an example, a response variable (n = 30) containing three categories (red = A, green =
B, blue = C) can be classified on the basis of two predictor variables (Predictor variables 1 and
2). In this example data set (Table 3.3), each value of the response variable (one of A, B or C)
corresponds with a value for each predictor variable, so that Predictor variable 1 (2) is less than

or greater than x (y) in each of the n-years of data.

Table 3.3. An example data set used in a tree-based analysis. The response
(predictor) variables are categorical (continuous or categorical).

n Response variable  Predictor variable 1 Predictor variable 2
1 A <X > y

2 B > X < y

30 A <X < y

In a tree-based model, all n-years of data start in the ‘root’ or ‘parent’ node (Node 1 in
Figure 3.9). In the example, Node 1 contains ten cases of each of the three categories A, B and
C (n = 30) of the response variable. CART searches for a way to divide, or ‘split’, the response
variable into two mutually exclusive groups based on a single predictor variable, so that the
purity of the two nodes is increased. In a classification tree, ‘node purity’ refers to the
homogeneity of the node, i.e. if all cases in the node belong to one class (multiple classes) then
node purity is high (low).

In the example, the first split divides the response variable so that all cases when ‘Predictor
variable 1 > x’ (‘Predictor variable 1 < x’) are allocated to the left (right) side of the tree. When
the ‘splitting criterion’ (i.e. ‘Predictor variable 1 > x’) is true (not true) the corresponding cases
of the response variable are always allocated to the left (right). All predictor variables used in
this analysis are continuous variables, which means that the criteria for splitting can take any

realistic value of the index.
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By convention, the first root node is numbered ‘Node 1’ and the ‘child nodes’ resulting
from the split are numbered so that the left-child node is double the parent node and the right-
child node is double the parent node plus one. In the example, the root node is numbered “17,
which is split to create “Terminal Node 2” (2 is double 1) on the left when the spitting criterion
is true and “Node 3” (3 is double 1 plus 1) on the right when the splitting criterion is not true.
Node 3 is then split creating “Terminal Node 6” (6 is double 3) and “Terminal Node 7” (7 is
double 3 plus 1).

NODE 1
A(n=10)
B (n =10)
C (n=10)
Predictor variable 1 > x NODE 3
A (n = 3)
B (n=6)
C(n=9)
TERMINAL Predictor variable 2 <
NODE 2
An=7)
B (n = 4)
C(n=1)
TERMINAL TERMINAL
NODE 6 NODE 7
A(n=3) A(n=0)
B (n=5) B(n=1)
C(n=4) C (n=5)

Figure 3.9. An example classification tree that classifies a categorical
response variable (three classes each with ten cases, n = 30) from
a suite of two predictor variables (Predictor variables 1 and 2).

The ‘Gini index’ is a measure of node impurity and is calculated based on the number of
cases belonging to each class in the node. The index is calculated by subtracting the sum of the
squared probability of each class’ occurrence in the node (Equation 3.1) from one. This means
that when a node contains only one class (i.e. a pure node) the Gini Index is zero, while when
there are equal numbers of all classes (i.e. an impure node) the index is 1-1/n (where n = the
number of classes). CART identifies the splits that minimise the mean node impurity, as
measured by the Gini Index. Splits are chosen based on the Gini Index so that node impurity is
decreased. In the example, Node 1 has equal numbers of all classes so the Gini index is at its

maximum value of one as node impurity is at its maximum. In the example, Terminal Node 7

Kirien Whan Chapter 3: Data sets and Methods



58

has zero cases from ‘Group A’, one case from ‘Group B’ and five cases from ‘Group C’, which
results in a Gini index of 0.26 (Equation 3.2), showing that the Gini index is lower (closer to

zero) when node purity is higher.

Equation 3.1. A classification tree used the Gini Index to calculate node
purity, where j = class, p; = probability of class j.

Gini Index =1 — Zp}-:

J

Equation 3.2. Calculation of the Gini index of Terminal Node 7, in the
example in Figure 3.9.

Gini Index of Terminal Node 7 = 1 — ((1/6)*+ (5/6)%) = 0.2778

Generally in a CART analysis an overly large tree is created so that all possible splits can
be assessed and then ‘pruned’ back to an optimal size (Breiman et al. 1984). Node purity is
higher in a larger tree with more terminal nodes, because, if left to run unchecked, the response
data would be divided so that the Gini Index of each terminal node was zero, i.e. terminal nodes
include only one class of data. This, however, would result in an overly large tree with limited
practical significance and little interpretability. So there is a trade off between tree size and node
purity. High node purity is easily achievable when tree size is large, but in this case the
interpretability of the tree is often compromised. When tree interpretability is high (i.e. in a
smaller tree with fewer splits), node purity is often conceded, as is the case when a tree is
pruned back to a smaller, more manageable size. Consequently, terminal nodes in classification
trees are rarely completely pure (containing only one class of data) and are more regularly
comprised of multiple data classes. Cross-validation is used to assess error and prediction
accuracy in a CART model. The data set is split into k-subsets (default £ = 10), which are each
left out in turn (i.e. the subset is left ‘out-of-bag’), and the model is fitted to the remaining
subsets (i.e. the ‘in-bag’ subset). The out-of-bag is then used to assess the predictive capability
and error of the model with different tree sizes, so that the tree size with a minimum cross-
validated prediction error can be selected (Maindonald and Braun 2010). The size of the tree
(i.e. the number of splits) can be controlled directly (as in Chapter 5) or indirectly through the
use of a ‘complexity parameter’ that puts a cost on each additional split (as in Chapters 6 and 7).
The increased complexity of a larger tree is balanced against a reduction in node impurity

(Maindonald and Braun 2010).

CART uses a ‘majority rule’ to allocate each terminal node to one of the categories of the
response variable data, so that the terminal node is allocated to the class to which a majority of

its members belong. In the example, Terminal Node 2 is allocated as ‘Class A’ as there are 7
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cases in class A, 4 cases in class B and 1 case in class C; this node is 58% pure as 7 out of 12

cases belong to the majority class.

An additional feature of CART that makes it useful in climatological studies with
incomplete data records is the use of ‘surrogate splits’. Instead of discarding those cases where a
value of a predictor variable is missing, CART instead classifies the response variable on the
basis of a different predictor variable that closely predicts the child nodes classified with the

original splitting criterion (Therneau et al. 2010).

The CART analysis in this thesis is conducted using the ‘rpart’ package (Therneau et al.
2010) in the ‘R’ statistical environment (R Development Core Team 2012); the package is
based on (Breiman et al. 1984). The rpart package requires several arguments to be passed to the
function that control aspects of the model fit (Therneau et al. 2010). The default values from the
rpart package are outlined in Table 3.4; these are the values used in the following chapters,
unless otherwise specified in the methods summary located in each subsequent chapter
(Chapters 5 — 7).

Table 3.4. The arguments controlling the ‘rpart’ function (Therneau et al.
2010) used to create the tree-based models in the R Statistical
Computing environment (R Development Core Team 2012).

Argument Default  Definition
. . The minimum number of observations in a node for a split to be
minsplit 20
attempted.
. The minimum number of observations in a terminal node for a
minbucket 7 .
split to be attempted.
The complexity parameter: any split that does not decrease the
cp 0.01 Cap?
overall lack of fit by ‘cp’ is not attempted.
The maximum number of competitor splits retained in the
maxcompete 4
output.
maxsurrogate 5 The number of surrogate splits retained in the output.

How to use surrogate splits; option ‘2’ specifies that if all
usesurrogate 2 surrogates are missing then observations are sent in the
majority direction (as per Breiman et al., 1984)

xval 10 The number of cross-validations.

Controls the selection of the best surrogate split; option ‘0’ the
surrogatestyle 0 total number of correct classifications is used for a potential
surrogate variable.

maxdepth 30 Set the maximum depth of the tree (root node is depth 0).

Previously, many statistical methods have been used to understand the complexities of a
non-linear and non-stationary climate. Simple linear statistics such as correlation and regression

have given basic understanding of relationships between predictor and response variables, such
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as ENSO and southeast Australian rainfall. The limitations of a linear statistical framework is
clear in a region where multiple climate drivers affect hydroclimatic variability and that
interactions between climate drivers are vital for the region. CART is set of statistical
techniques that can capture interactions between multiple predictor variables and is well suited
to the analysis of discrete and event-bases phenomena, such as hydroclimatic regimes and the
large-scale conditions that make such regimes more or less likely. In addition, the method is
well suited to event-based phenomena such as rainfall and the conditions that must be present
for rainfall to occur. Decision trees are constructed that seek to describe the variability of one
response variable by several predictor variables (De'ath and Fabricius 2000), they are
particularly useful when you have multiple correlated predictor variables. Although not
intended to replace other statistical techniques, CART can add understanding and provide
insight into physical mechanisms underlying statistical relationships with easily interpretable
results (Breiman et al. 1984, Rodionov et al. 2001). CART has been employed in many fields
including ecology and genetics (De'ath and Fabricius 2000, Esther et al. 2010, Prasad et al.
2006, Thuiller et al. 2003) with some applications in climatology (Burrows et al. 1995, Cannon
et al. 2002, Carter and Elsner 1997, Degirmendzic and Widbig 2007, Enke et al. 2005, Firth et
al. 2005, Kennard et al. 2010, Lawler et al. 2006, Li and Sailor 2000, Rodionov et al. 2001,
Rodionov et al. 2005, Wei and Watkins 2011).

The severity of winter regimes in the Great Lakes region in North America was classified
from a variety of indices of large-scale modes of climate variability, showing how CART can
extract additional information than a linear analysis. Classification trees were able to establish
that the Polar/Eurasian index was the best predictor variables of winter severity despite a lower
correlation than some other indices. It was suggested that the weak linear relationship was due
to an asymmetry in the relationship between the index and winter severity (Rodionov and Assel
2000). In addition, regression trees have been used to skilfully predict streamflow in the Lower

Colorado River from relationships with large-scale climate drivers (Wei and Watkins 2011)

This section (3.3.2) has outlined the major features and terminology of the CART models
that are used for the analysis in Chapters 5 and 6. Further examples of many of these features, as
used in this thesis, are discussed in Chapter 5. Next in Section 3.3.3 is a discussion of the

‘Random Forests’ method that is used in Chapter 7.

3.3.3 Random Forests (Chapter 7)

Random forests are a bagging (bootstrap aggregating) version of CART where multiple
independent trees are constructed. The averaging of multiple classification trees has several

benefits. Firstly, it can increase the prediction accuracy (Firth et al. 2005). Secondly, it can
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reduce the instability and over-fitting associated with individual classification trees (Hastie et al.
2001) where small changes to the response variable can result in large changes to the final tree
structure (Firth et al. 2005). While the over-fitting of individual trees is not an issue when the
aim is to understand relationships between predictor and response variables, it becomes an issue

when the aim is prediction.

A random forest consists of a collection of tree-structured classifiers (i.e. classification or
regression trees) that are constructed from identically distributed subsets of the full data set (i.e.
the ‘in-bag’ sample). Each tree in the random forest has a vote as to the final class of each
individual case (Breiman 2001). The subset of the sample that is kept ‘out-of-bag’ during the
construction of the random forest can be used to test the accuracy of the individual tree and
aggregated across the forest, because this out-of-bag sample has not been presented to the

individual tree (Firth et al. 2005).

The random forests analysis used in Chapter 7 of this thesis is implemented using the
‘randomForest’ package (Liaw and Wiener 2002) in the ‘R’ statistical environment (R

Development Core Team 2012), based on the work of (Breiman 2001).

Although CART has had limited applications in Australian climatic research, random
forests have been used to predict the timing of the onset of winter rain in Western Australia
from a variety of predictor variables. SST anomalies were found to be the most valuable

predictors with the onset correctly classified with 80% accuracy (Firth et al. 2005).

This chapter has outlined the data sets and methods used throughout this thesis to explore
interactions between climate drivers that influence hydroclimatic regimes. The suite of predictor
variables that were discussed in Chapter 2 have been defined and the regions used as response
variables outlined. Each of the subsequent results chapters (Chapters 4 — 7) will summarise the

specific data sets and methods used in that section of the analysis.
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Chapter 4 : Linear Analysis

4.1 Chapter summary and context

This chapter will outline the linear relationships between hydroclimatic variables and the
large-scale modes of climate variability that relevant to the Australian region. Assessment of the
linear relationships using these indices and the novel AWAP data set is a vital first step in this

research.

The focus in this chapter will be on response variables (rainfall, upper-layer and lower-
layer soil moisture) and predictor variables (14 indices of regional and remote large-scale modes

of climate variability) that will be used in subsequent chapters (Chapters 5 — 7).

The ‘Introduction’ (Section 4.2) will discuss previous research to show consistency with
the current analysis. Methods and datasets will be described in Section 4.3, with the
simultaneous and lagged correlations between response and predictor variables following in

Section 4.4. The conclusions of this chapter will be outlined in Section 4.5.

4.2 Introduction

This chapter will outline the linear relationships between hydroclimatic variables and the
large-scale modes of climate variability that are relevant to the Australian region. Assessment of
the linear relationships using these indices and the novel AWAP data set is a vital first step in

this research.

The meteorological products from AWAP (Donohue et al. 2010a, Donohue et al. 2010b,
Evans and McCabe 2010, Fawcett 2010, van Dijk and Renzullo 2011) have been widely utilised
in both operational and research contexts but the hydrological products have been used less

frequently (Cai et al. 2009a, Cai et al. 2009b, Kala et al. 2011, Ummenhofer et al. 2011).

The chapter will focus on each climate driver separately, the sub-tropics in Section 4.4.1,
the Pacific Ocean in Section 4.4.2 and the Indian Ocean in Section 4.4.3. Within these sub-
sections, the simultaneous and lagged relationships between indices of each large-scale mode of
climate variability and three hydroclimatic response variables (rainfall, upper-layer and lower-

layer soil moisture) will be discussed.

4.3 Data sets and methods

A full discussion of the data sets and methods can be found in Chapter 3, this section will

outline the specific data sets and methods used in this chapter.
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4.3.1 Data sets

The linear relationship between the indices large-scale modes of climate variability and
Australian hydroclimatic variability is assessed in this chapter. The indices of large-scale modes

of climate variability that are used here are formally defined in Chapter 3, and shown below in

Table 4.1.

Australian hydroclimatic variability is represented on the continental scale by gridded
rainfall, upper-layer soil moisture and lower-layer soil moisture from the AWAP data set (Jones
et al. 2009, Raupach et al. 2008). The time series of rainfall in 12 Australian drainage divisions
(Figure 4.1 and Table 4.2) is also used throughout this chapter. Rainfall, upper-layer and lower-

layer soil moisture in the Murray-Darling Basin (MDB: Regions 4a, 4b and 4c combined) is

used to assess the lagged relationships.

Table 4.1. Indices of large-scale modes of climate variability used throughout

Chapter 4.

Name Group Reference
Nifio 3 Pacific Ocean (Trenberth 1997)
Nifio 3.4 Pacific Ocean (Trenberth 1997)
Nifio 4 Pacific Ocean (Trenberth 1997)

El Nifio Modoki Index (EMI)

Southern Oscillation Index (SOI)

Tri-pole Index (TPI)
Region C

Nicholls” SST gradient
Northwest Shelf (NWS)
Dipole Mode Index (DMI)
DMI - Eastern Pole

DMI — Western Pole

STR — Intensity

STR — Position

Pacific Ocean
Pacific Ocean

Pacific and Indian Ocean

Indian Ocean
Indian Ocean
Indian Ocean
Indian Ocean
Indian Ocean
Indian Ocean

STR

STR

(Ashok et al. 2007)

(Troup 1965)

(Timbal and Hendon 2011)
(Cai and Cowan 2008a)
(Nicholls 1989)

(Timbal and Murphy 2007)
(Saji et al. 1999)

(Saji et al. 1999)

(Saji et al. 1999)

(Drosdowsky 2005, Timbal and
Drosdowsky 2013)
(Drosdowsky 2005, Timbal and
Drosdowsky 2013)
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Table 4.2. Names, abbreviations and region numbers for each of the
drainage divisions used throughout Chapter 4. Drainage division
abbreviations here correspond to the regions shown in Figure 4.1.

Drainage Division (Abbreviation) Region Number
Timor Sea (TiS) 1
Gulf of Carpentaria (GoC) 2
Northeast Coast — Sea (NECS) 3a
Northeast Coast — Burdekin/Fitzroy (NECBF) 3b
Murray-Darling Basin Agricultural (MDBA) 4a
Murray-Darling Basin Semi-Arid (MDBSA) 4b
Murray-Darling Basin Wet (MDBW) 4c
Southeast Coast (SEC) 5
Tasmania (Tas) 6
South-Australian Gulf (SAG) 7
Southwest Coast (SWC) 8
Indian Ocean (10) 9

NECS NECBF SEC TAS MDBW MDBAMDBSA SAG SWC 10 TiS GoC NA

Figure 4.1. The 12 Australian drainage divisions that are area-average and
used as response variables in this Chapter. The whole MDB region
is the sum of MDBW (pink), MDBA (maroon) and MDBSA (red).
Table 4.2 for the names of the regions/drainage divisions.
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4.3.2 Methods

The simultaneous linear relationships between the indices of the three climate drivers
(ENSO, IOD, STR) and Australian hydroclimatic variability (rainfall, soil moisture) in each of
the traditional seasons (MAM, JJA, SON, DJF) are assessed using Pearson’s correlation
coefficients. Correlations significant at the 5% level are coloured in the continental scale figures

and bold in the tables.

The spatial signature of the lagged relationship is assessed by correlating SON (JJA)
hydroclimatic variability (rainfall, soil moisture) with indices of ENSO or the IOD (STR) from
the preceding season. To assess how quickly the relationship decays, correlations are calculated
between SON (JJA) hydroclimatic variability (rainfall, soil moisture) and indices of ENSO and
the IOD (STR) from the preceding three-month averaged seasons with lag increasing by one-

month.

4.4 Results
4.4.1 Sub-tropical ridge

This section evaluates the linear relationship between facets of the STR (i.e. STR intensity
and position) and hydroclimatic variability in Australia. In each sub-section, the relationship
between rainfall and the STR intensity and position is discussed first, followed by an analysis of

the relationship between STR intensity and position and soil moisture (upper and lower).

4.4.1.a Spatial correlations

The intensity of the STR is negatively correlated with rainfall in southern and eastern
Australia (Figure 4.2 and Table 4.3), showing that increased MSLP (a stronger STR) is
associated with decreased rainfall. The significant negative correlations between STR intensity
and regional MAM rainfall are found in TAS, SAG, SEC and the MDB regions. The strength
and extent of the significant correlations between rainfall and STR intensity peaks in JJA, as the
whole of southern Australia (TAS, SAG, SEC, MDB regions, IO, SWC) is covered in stronger
correlations while a more moderate significant relationship stretches to northern Australia (TiS).
The relationship in SON is similar to the other transition season (MAM); negative correlations
are confined to southern Australia (TAS, SAG, SWC, MDBW, MDBSA). In SON, the mid-east
coast displays a positive correlation on the spatial plots (Figure 4.2) that is not captured by the
regional analysis (Table 4.3), this highlights how spatially aggregating rainfall anomalies can
mask characteristics of the variability. In SON, increasing STR intensity is associated with

increased rainfall as a more larger pressure gradient from the more intense high-pressure cell
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increases the mean geostrophic flow and the strength of the moist onshore winds (Rakich et al.
2008). In DJF, as the monsoon trough moves south over the continent, the region of strong
negative correlations are confined to TAS, while significant positive correlations cover southern
continental Australia (SEC, MDBA, MDBSA, SAG). When the ridge is at its southerly
maximum in DJF, a higher MSLP (stronger STR) is associated with increased rainfall, likely as
a result of a large pressure gradient and increased tropical interactions over the region. Overall,
this analysis is consistent with previous research that found the relationship between STR

intensity and SEA rainfall peaked in late autumn / early winter (Timbal and Drosdowsky 2013).

The correlations between STR position and rainfall (Figure 4.2 and Table 4.3) are
generally weaker than those with STR intensity; this is a common result across all hydroclimatic
variables and agrees with previous research (Timbal and Drosdowsky 2013). In MAM the
relationship between southern Australian rainfall (MDBW, TAS) and STR position is negative,
suggesting that as the ridge moves further south rainfall decreases; while in northern Australia
(NEC) the significant positive correlation suggests that a southerly position is associated with
increased rainfall. The relationship peaks in JJA when SEA (MDBW, MDBSA, TAS, SAG,
SWC) is covered by strong negative correlations with positive correlations along the eastern
coast that are indicated by the non-significant positive correlation in the SEC region. In JJA the
STR is located over the continent at about 30°S, which allows frontal systems to move over the
southern parts of the continent. Any increases in STR position in JJA will thus move the STR to
a more southerly position that results in a southerly shift of the mid-latitude storm track and
decreased rainfall for southern Australia. In SON, the spatial pattern of significant correlations
between gridded and area-averaged rainfall is similar to MAM with an additional region of
negative correlations found in the SWC. In DJF, the relationship between STR position and
rainfall is positive in continental Australia (NEC, SEC and MDB regions), suggesting that as the
ridge increases its southerly position rainfall in Australia increases. A discussion of upper-layer

soil moisture is next.
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Figure 4.2. Correlation between gridded Australian rainfall and STR intensity
(top) and position (bottom) in MAM, JJA, SON and DJF, over the
period 1900 — 2009. Coloured regions indicate correlations that are
significant at the 5% significance level.
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Table 4.3. Correlations between area-averaged rainfall in 12 drainage
divisions and STR intensity (“Int”) and position (“Pos”) in MAM,
JJA, SON and DJF, over the period 1900 — 2009. Bold indicates
correlations that are significant at the 5% significance level.

Reg- L Int: Pos: Int: Pos: | Int: Pos: | Int: Pos:
. Division JIA
10n MAM MAM JJA SON SON | DJF DIJF
= TiS -0.09 0.10 | -0.29 -0.051] -0.08 0.23 | -0.06 0.00
5
“ GoC -0.11 0.12 | -0.05 0.06 | -0.16 0.16 | -0.04 0.09
z NEC -0.01 0.24 0.08 032 | -0.08 0.24 | 0.01 0.20
£
‘ZD NECBF -0.1 0.15 |-0.10 0.17 | -0.13 0.18 | 0.01 0.10
SEC -0.23 0.10 |-0.37 0.03 | -0.14 0.16 | 0.19 0.34
2 MDBW -0.46 -0.28 | -0.69 -0.60 | -0.41 -0.24 | 0.17 0.24
£
=
A MDBA -0.24 -0.02 | -0.39 -0.11 | -0.17 0.09 | 0.23 0.25
MDBSA -0.25 -0.03 | -046 -0.22 ( -0.22 0.00 | 0.32 0.20
= TAS -0.57 -048 | -0.53 -0.51 | -0.61 -0.57(-0.55 -0.16
2
? SAG -0.36 -0.01 | -0.67 -0.47 (-0.30 -0.18 [ 0.25 0.18
- SWC -0.04 0.05 |-049 -0.341]-0.27 -0.19 | 0.14 0.07
2
10 -0.07 -0.07 | -034 -0.15( 0.12 0.12 | 0O.11 0.02

The relationship with STR variability is evident throughout the hydrological cycle and is
spatially and temporally consistent. A remarkably similar pattern to that of rainfall is evident in
both the correlations between STR intensity and position with upper-layer soil moisture (Figure
4.3). The relationship between STR intensity and upper-layer soil moisture peaks in JJA with
strong (moderate) correlations over SEA (central and Western Australia). The SON and DJF
patterns also reflect the rainfall spatial correlation pattern. Although, in MAM the relationship
between upper-layer soil moisture and STR intensity is somewhat weaker than for rainfall. The
negative correlations suggest that increase STR intensity is associated with decreased upper-

layer soil moisture levels. The similarities between the spatial signatures of rainfall and upper-
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layer soil moisture imply that rainfall is the climatological process that is the immediate driver
of changes in upper-layer soil moisture and that the upper-layer of the soil column responds

directly to changes in rainfall without any lag.

The relationship between STR position and upper-layer soil moisture (Figure 4.3) imitates
the rainfall pattern in all seasons. The relationship peaks in JJA with negative correlations
present across southern Australia. There are some regions of positive correlation along the

eastern coast in SON, while DJF and MAM show few significant correlations.

The similarity between the rainfall and upper-layer soil moisture correlation patterns
suggest that both variables are responding in the same way to climate drivers. Next is a
discussion of the relationship between STR intensity and position with lower-layer soil

moisture.
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Figure 4.3. Correlation between gridded Australian upper-layer soil moisture
and STR intensity (top) and position (bottom) in MAM, JJA, SON
and DJF, over the period 1900 — 2009. Coloured regions indicate
correlations that are significant at the 5% significance level.

The simultaneous correlations between lower-layer soil moisture and the STR intensity and
position (Figure 4.4) are weaker and have a reduced spatial extent than was seen previously for
rainfall and upper-layer soil moisture. In MAM correlations with both STR intensity and
position are insignificant over SEA but there are some regions of positive relationship in central
Australia. The relationship peaks in JJA, consistent with the annual cycle of the STR, but the

extent and strength is greatly reduced. SON and DJF display few significant correlations.

The differences between the correlation patterns for rainfall and upper-layer soil moisture
compared to lower-layer soil moisture suggest that rainfall and upper-layer soil moisture

respond to different processes than lower-layer soil moisture.
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Figure 4.4. Correlation between gridded Australian lower-layer soil moisture
and STR intensity (top) and position (bottom) in MAM, JJA, SON
and DJF, over the period 1900 — 2009. Coloured regions indicate
correlations that are significant at the 5% significance level.

This section has shown that the simultaneous relationship between STR intensity and
rainfall, upper-layer and lower-layer soil moisture is stronger than the relationship with STR
position in all seasons. All response variables follow the seasonal cycle of the STR, with
correlations peaking in JJA. The following section (4.4.1.b) will discuss the lagged correlations

between STR variability and Australian hydroclimate.

4.4.1.b Lagged correlations

It was shown previously (Section 4.4.1.a) that the relationship between gridded and area-
averaged rainfall and soil moisture (upper and lower) peaks in JJA. The importance of the
MAM transition season (from the DJF to JJA patterns) for the STR has been discussed
elsewhere (Timbal and Drosdowsky 2013). As such, the lagged correlations between JJA

response variables and MAM STR intensity and position will be discussed here.

Despite large simultaneous correlations in JJA, few significant lagged correlations are
evident with either facet of the STR in the preceding season (Figure 4.5). This is consistent with
the correlations between MDB area-averaged rainfall and indices of the STR at 12 three-month
sliding window lead-times (Figure 4.6). The maximum correlation is between the simultaneous
values of STR intensity and position with MDB rainfall, with the linear relationship decaying

steadily with increasing lead-time.
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Figure 4.5. The simultaneous correlation between gridded JJA rainfall and
STR intensity (top) and position (bottom) in JJA (left) and the
‘lagged’ correlation between JJA rainfall and the STR indices in
MAM (right, three-month lead-time), over the period 1900 — 2009.
Coloured regions indicate correlations that are significant at the
5% significance level.
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Figure 4.6 The correlation between JJA MDB rainfall and STR intensity
(black) and position (red) with increasing lead-time, over the period
1900 - 2009. The simultaneous correlation is shown at JJA and the
horizontal coloured lines indicate the simultaneous correlation
level. Correlations exceeding +/-0.2 are significant at the 5%
significance level.

The relationship between the STR and upper-layer soil moisture decays relatively quickly
(Figure 4.7) although there are more significant correlations at the three-month lead-time for

this hydrological variable than there was for rainfall. This suggests that while upper-layer soil
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moisture responds quickly to changes in rainfall, the upper-layer soil moisture is able to smooth
out some of the high-frequency variability in the relationship. At the three-month lead-time, the
widespread and strong correlation evident in the simultaneous correlation between STR
intensity and JJA rainfall retracts and weakens but is still significant over SEA. The negative
correlation between JJA STR position and upper-layer soil moisture is considerably reduced at
the three-month lead-time. Area-averaged MDB correlation between STR intensity and upper-
layer soil moisture (Figure 4.8) peaks at the 1-month lead-time (MJJ) and with significant
correlations continuing until MAM. The correlation between STR position and MDB upper-

layer soil moisture decays quickly from the simultaneous maximum and is rarely significant.
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Figure 4.7. The simultaneous correlation between gridded JJA upper-layer
soil moisture and STR intensity (top) and position (bottom) in JJA
(left) and the ‘lagged’ correlation between JJA upper-layer soil
moisture and the STR indices in MAM (right, three-month lead-
time), over the period 1900 — 2009. Coloured regions indicate
correlations that are significant at the 5% significance level.
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Figure 4.8. The correlation between JJA MDB upper-layer soil moisture and
STR intensity (black) and position (red) with increasing lead-time,
over the period 1900 — 2009. The simultaneous correlation is
shown at JJA and the horizontal coloured lines indicate the
simultaneous correlation level. Correlations exceeding +/-0.2 are
significant at the 5% significance level.

The relationship between JJA gridded lower-layer soil moisture and MAM STR (Figure
4.9) decays less than the three-month lagged relationship with upper-layer soil moisture (Figure
4.7). The STR intensity correlation decreases in spatial extent but the strength of the negative
correlation over SEA is similar. The correlation between MAM STR position and JJA lower-
layer soil moisture in SEA also decreases in spatial extent but is not initially large. Interestingly,
the three-month lagged relationship between STR position and the lower-layer of soil moisture
displays a large, strong region of positive correlation in central Australia. This means that as the
STR in MAM moves south, the saturation of the lower soil column in JJA increases in central
Australia; although this result should be viewed with caution as data quality in central Australia

is poor (Ummenhofer et al. 2011).

The correlation between STR intensity and lower-layer soil moisture (Figure 4.10) displays
a strong lag up to two months before (AMJ) as the strength of the correlation increases at this
lag. The simultaneous correlation is -0.25, which increases at a maximum of -0.36 at a 1-month
lead-time but remains stronger than the simultaneous correlation at a two-month lead-time (r = -
0.33). This shows that STR intensity in the preceding months has a stronger relationship with
JJA lower-layer soil moisture than JJA STR intensity. This is in line with the lagged

relationships we understand between rainfall and lower-layer soil moisture (Cai et al. 2009a).
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Figure 4.9. The simultaneous correlation between gridded JJA lower-layer
soil moisture and STR intensity (top) and position (bottom) in JJA
(left) and the ‘lagged’ correlation between JJA lower-layer soil
moisture and the STR indices in MAM (right, three-month lead-
time), over the period 1900 — 2009. Coloured regions indicate
correlations that are significant at the 5% significance level.
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Figure 4.10. The correlation between JJA MDB lower-layer soil moisture and
STR intensity (black) and position (red) with increasing lead-time,
over the period 1900 — 2009. The simultaneous correlation is
shown at JJA and the horizontal coloured lines indicate the
simultaneous correlation level. Correlations exceeding +/-0.2 are
significant at the 5% significance level.

The lack of significant correlations between rainfall and the STR at a three-month lead-
time suggests that there is no persistence of either STR intensity or position, which is consistent

with the high-frequency variability found in the atmosphere. The significant correlations
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between upper-layer and lower-layer soil moisture, however, suggest that these hydrological
variables are able to smooth out some high-frequency variability from the rainfall signal, as

water takes time to move through the hydrological cycle.

This section has shown the consistency of the relationship between the STR and
hydroclimatic variability in Australia. For all response variables, the relationship with STR
intensity was stronger than the relationship with STR position, for all response variables,
consistent with previous research (Timbal and Drosdowsky 2013). The complexity of the
relationship between STR position and Australian hydroclimatic variability was demonstrated
as the sign of the relationship depends on the mean position of the STR. The following section

will discuss the relationship between ENSO and hydroclimatic variability in Australia.

4.4.2 El Nino — Southern Oscillation (ENSO)

The previous section (4.4.1) discussed the linear relationships between facets of STR
variability and Australian hydroclimate. This section will discuss the linear relationship
throughout the seasonal cycle between several oceanic and atmospheric indices of ENSO
variability with gridded and area-averaged Australian rainfall and soil moisture (upper and
lower layers). The relationship between ENSO and Australian hydroclimatic variability is well
known (Chiew et al. 1998, Drosdowsky and Williams 1991, Nicholls et al. 1997) and this
section will establish that these relationships are reproducible with the current dataset. The
seasonality and spatial pattern of the simultaneous relationship will be discussed first (Section
4.4.2.a), followed by a discussion of the lagged relationship (Section 4.4.2.b). In each sub-
section, the relationship between rainfall and ENSO is discussed first, followed upper-layer and

lower-layer soil moisture.

4.4.2.a Spatial correlations

The relationship between various indices of ENSO (Nifio 3, Nifio 4, Nifio 3.4, SOI) and
Australian rainfall follows a distinct seasonal cycle (Figure 4.11 and Table 4.4), consistent with
previous research (Risbey et al. 2009). The correlations with the SOI are the strongest in all
seasons and this is a common result across response variables. The SOI is calculated from
MSLP and is thus more closely related to the processes that generate rainfall, whereas the
oceanic measures are physically one step removed from the rainfall generation process and so,

accordingly, the correlations here are weaker.

Broadly, the relationship builds in JJA and peaks in SON before decaying in DJF, with
little correlation evident in MAM. More specifically, in JJA significant correlations between the

oceanic indices are evident over northern and eastern Australia (NEC, NECBF, MDBA,
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MDBSA, MDBW, SEC, TAS, SWC), while correlations with the SOI are more extensive in
southern Australia (GoC, SAG, 10 in addition to the regions listed previously). The sign of the
relationships indicate that a positive SOI (oceanic index) is associated with increase (decreased)
rainfall. The lack of significant correlations in the northern Australian regions (TiS and GoC) is
likely related to the low rainfall received in those divisions in JJA and suggests that rainfall in
the northeastern region (NEC, NECBF) stems from different mechanisms. Spatially the SOI has
a more extensive relationship with rainfall in JJA, while the oceanic indices are confined to the
central eastern coast during this season. This suggests that the atmospheric component of ENSO
has a more immediate relationship with rainfall, and that although the SST anomalies begin to

build during this season the relationship with rainfall is not evident until SON.

In SON, the eastern third of the continent is covered by significant correlations with both
the SOI and the oceanic indices; this is reflected by the significant correlations in all divisions
except 10. In DJF, the extent of the significant relationship is confined to northern (TiS, GoC,
NEC, NECBF), eastern (SEC, MDBA, MDBSA, MDBW) and southwestern (SWC, 10)
Australia, with the magnitude decreasing in most divisions. During DJF the correlations with
Nifio 3 and Nifio 4 are weaker than those found in SON but cover the majority of the eastern
coast. The correlations between the SOI and rainfall in DJF are stronger and more widespread
than the oceanic indices correlations as they extend west across northern Australia. Finally, in

MAM significant correlations are found in northern Australia (TiS, GoC, NEC) and the SEC.
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Figure 4.11 Correlation between gridded Australian rainfall and three indices
of ENSO - Nifo 3 (top), Nifio 4 (middle) and the SOI (bottom) - in
MAM, JJA, SON and DJF, over the period 1900 — 2009. Coloured
regions indicate correlations that are significant at the 5%
significance level.
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Table 4.4. Correlations between area-averaged rainfall in 12 drainage
divisions and two indices of ENSO - Niiio 3.4 (N34) and the SOI

(SOIl) -in MAM, JJA, SON and DJF, over the period 1900 — 2009.
Bold indicates correlations that are significant at the 5%

significance level.

Reg- o N34: SOI: N34: SOI: N34. SOI: N34: SOI:
. Division
1on MAM MAM JJA JJA SON SON DIJF DIJF
= TiS -0.22 0.32 -0.01 0.16 -0.53 0.59 -0.22 042
5
Z GoC -0.25 0.43 -0.15 0.19 -0.52 0.63 -0.35 0.51
‘g NEC -0.25 0.35 -0.36 0.35 -0.57 0.63 -0.39 0.50
£
‘ZD NECBF -0.12 0.16 -0.38 0.39 -0.55 0.63 -0.35 0.42
SEC -0.21 0.21 -0.31 0.41 -0.45 0.49 -0.30 0.30
‘g MDBW -0.05 0.17 -0.21 0.46 -0.48 0.49 -0.24 0.22
2
=
A MDBA -0.01 0.09 -0.35 0.58 -0.49 0.57 -0.32 0.26
MDBSA -0.14 0.20 -0.28 0.50 -0.50 0.54 -0.27 0.25
= TAS 0.02 0.09 -0.18 0.32 -0.30 0.31 -0.05 0.05
3
@ SAG -0.18 0.18 -0.17 0.45 -0.32 0.32 -0.08 0.10
- SWC -0.22 0.16 -0.21 0.36 -0.19 0.20 -0.22 0.23
g
10 -0.10 0.07 -0.11 0.26 -0.16 0.11 -0.30 0.35

The relationship between ENSO and upper-layer soil moisture (Figure 4.12) is similar but
somewhat larger in magnitude to that of rainfall, which again suggests that upper-layer soil
moisture responds directly to changes in rainfall and the large-scale variability. For the oceanic
indices the relationship in JJA is moderate while the SOI has a much stronger and more
spatially extensive relationship. There are few differences between the atmospheric and oceanic
measures of ENSO in SON as the eastern two thirds of the continent are covered in strong

correlations, showing that El Nifio events are associated with decreases in upper-layer soil

moisture.
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Figure 4.12. Correlation between gridded Australian upper-layer soil
moisture and three indices of ENSO - Nifio 3 (top), Nifio 4 (middle)
and the SOI (bottom) - in MAM, JJA, SON and DJF, over the period
1900 - 2009. Coloured regions indicate correlations that are
significant at the 5% significance level.

The relationship between lower-layer soil moisture and ENSO (Figure 4.13) is weaker and
has reduced spatial extent than we saw for rainfall or upper-layer soil moisture. Correlations are
strongest in MAM, SON and DJF while little relationship is evident in JJA. Previous research
has suggested a lag between the climate forcing, a climatic response and a response in the
lower-layer of soil moisture (Raupach et al. 2008) and this may explain the correlation patterns
we see in Figure 4.13. There is little signal in the lower-layer in JJA as ENSO is inactive in the
preceding season. As ENSO develops during JJA we can see a signal in the lower-layer
increasing through SON into DJF when the relationship between ENSO and lower-layer soil
moisture peaks, which corresponds to the SON peak in ENSO that would be expected. There is
a much greater correlation found in MAM than would be expected but this may be due to lagged

effects from the DJF ENSO - rainfall relationship.
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Figure 4.13. Correlation between gridded Australian lower-layer soil moisture
and three indices of ENSO - Nifio 3 (top), Nifio 4 (middle) and the
SOl (bottom) - in MAM, JJA, SON and DJF, over the period 1900 -
2009. Coloured regions indicate correlations that are significant at
the 5% significance level.

This section has outlined the spatial extent and magnitude of the relationship between three
indices of ENSO and Australian hydroclimatic variability. The relationship between the three
indices was consistent, with the SOI having the strongest influence on Australian rainfall and
soil moisture. The correlations peaked in SON, with some significant relationships evident in
JJA and DJF. The following section (4.4.2.b) will discuss the strength of the correlation

between SON hydroclimatic variability and ENSO at various lead-times.

4.4.2.b Lagged correlations

The previous section (4.4.2.a) showed that ENSO related variability is greatest in SON, so
this season will be the focus of this section. The significant lagged correlations between rainfall
in SON and indices of ENSO in JJA are widespread, covering large parts of eastern Australia
(Figure 4.14). Although the significant correlations cover eastern Australia, the strength of the
relationship is decreased at a three-month lag, particularly for the SOI. A comparison of
simultaneous and lagged spatial patterns suggests that the relationship declines linearly. This is
supported by the area averaged MDB lagged correlations (Figure 4.15). The weakest (strongest)
simultaneous correlation is with Nifio 3 (SOI), r = -0.49 (r = -0.57) but the lagged correlations
with the SOI decrease more quickly than the oceanic indices. The lagged relationship with
rainfall stems from the persistence of an ENSO event so the stronger lagged correlations with

the oceanic indices is consistent with the reduced variability in these slowly evolving indices.
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Short-term variations in the atmosphere not associated with the development of ENSO events

would weaken the correlation at longer lead-times.
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Figure 4.14. The simultaneous correlation between gridded SON rainfall and
three indices of ENSO - Nifio 3 (top), Nifio 4 (middle) and the SOI
(bottom) - in SON (left) and the ‘lagged’ correlation between SON
rainfall and the ENSO indices in JJA (right, three-month lead-time),
over the period 1900 — 2009. Coloured regions indicate correlations
that are significant at the 5% significance level.
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Figure 4.15. The correlation between SON MDB rainfall and three indices of
ENSO - Nifio 3 (red), Nifio 4 (black) and the SOI (blue, sign of the
correlation reversed) - with increasing lead-time, over the period
1900 - 2009. The simultaneous correlation is shown at SON and the
horizontal coloured lines indicate the simultaneous correlation
level. Correlations exceeding +/-0.2 are significant at the 5%
significance level.

There is little decay from the simultaneous relationship in correlations between SON
upper-layer soil moisture and indices of ENSO at a three-month lead-time, particularly in
northeastern Australia (Figure 4.16). The strongest lagged correlations are with the SOI in
northern and southeastern Australia. A steady decline in the correlation coefficient with

increasing lead-time is evident in the MDB area-averaged lagged correlations (Figure 4.17).
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Figure 4.16. The simultaneous correlation between gridded SON upper-layer

soil moisture and three indices of ENSO - Nifio 3 (top), Nifio 4
(middle) and the SOI (bottom) - in SON (left) and the ‘lagged’
correlation between SON upper-layer soil moisture and the ENSO
indices in JJA (right, three-month lead-time), over the period 1900 —
2009. Coloured regions indicate correlations that are significant at
the 5% significance level.
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Figure 4.17. The correlation between SON MDB upper-layer soil moisture and
three indices of ENSO - Nifio 3 (red), Nifio 4 (black) and the SOI
(blue, sign of the correlation reversed) - with increasing lead-time,
over the period 1900 — 2009. The simultaneous correlation is
shown at SON and the horizontal coloured lines indicate the
simultaneous correlation level. Correlations exceeding +/-0.2 are
significant at the 5% significance level.

Similarly to the simultaneous relationship, the lagged relationship between SON lower-
layer soil moisture and JJA indices of ENSO is considerably reduced compared to rainfall and
upper-layer soil moisture (Figure 4.18). Again, the lagged relationship is strongest with the SOI,
particularly along the GDR, the central eastern coast and in Victoria, while Niflo 4 has the
strongest relationship in southeast Queensland. The MDB area-averaged lower-layer soil
moisture correlations with Nifio 3 at increasing lead-time (Figure 4.19) decline more gradually
than the lagged correlation with upper-layer soil moisture. Indeed, the correlations between
lower-layer soil moisture and the oceanic indices of ENSO are significant out to the six-month
lead-time and positive until the previous year. The correlation between lower-layer soil moisture
and the SOI increases with lead-time. Although no increase in correlation is found with the
oceanic indices so this increasing relationship with the SOI may be a statistical artefact caused

by sampling variability.
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Figure 4.18. The simultaneous correlation between gridded SON lower-layer
soil moisture and three indices of ENSO - Nifio 3 (top), Nifio 4
(middle) and the SOI (bottom) - in SON (left) and the ‘lagged’
correlation between SON lower-layer soil moisture and the ENSO
indices in JJA (right, three-month lead-time), over the period 1900 —
2009. Coloured regions indicate correlations that are significant at
the 5% significance level.
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Figure 4.19. The correlation between SON MDB lower-layer soil moisture and
three indices of ENSO - Nifio 3 (red), Nifio 4 (black) and the SOI
(blue, sign of the correlation reversed) - with increasing lead-time,
over the period 1900 — 2009. The simultaneous correlation is
shown at SON and the horizontal coloured lines indicate the
simultaneous correlation level. Correlations exceeding +/-0.2 are
significant at the 5% significance level.

This section has shown the relationship between ENSO and hydroclimatic variability using
the novel AWAP data set. The seasonal relationships between rainfall, upper-layer and lower-
layer soil moisture with indices of ENSO variability are consistent with previous research
(Kirono et al. 2010, Risbey et al. 2009). Correlations are significant and widespread in JJA,
SON and DJF, with the strongest relationships with indices that are closer to Australia (SOI and
Nifio 4). Significant correlations are present over eastern Australia for all response variables
indicating the persistence of ENSO from JJA to SON. Hydrological variables again display less

decrease in the strength of the relationship with increasing lead-time, compared to rainfall.

The following section (4.4.3) will look spatial and temporal variability in the relationship

between the Indian Ocean and Australian hydroclimatic variability.

4.4.3 Indian Ocean variability

The previous section (4.4.2) showed that relationships between ENSO were significant
over eastern Australia, peaking in SON. This section will shift the focus from the Pacific to the
Indian Ocean. Indices of Indian Ocean variability have a well-established relationship with
Australian hydroclimatic variability (Cai et al. 2009b, Drosdowsky and Chambers 2001,
Nicholls 1989, Risbey et al. 2009, Ummenhofer et al. 2009a, Ummenhofer et al. 2011). Here the
focus will be on three indices of Indian Ocean variability. 1) The Dipole Mode Index (DMI) is
the most commonly used index from the Indian Ocean, capturing variability in both the eastern

and western parts of the basin (Saji et al. 1999). 2) Region C is an area-averaged SST anomaly
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box near the Indonesian through-flow region (Cai and Cowan 2008a). 3) The Tripole Index
(TPI) is comprised of three area-averaged SST anomaly regions; the average of boxes from the
Indian Ocean and Pacific Ocean boxes are subtracted from the maritime continent SST
anomalies (Timbal and Hendon 2011). This means that the TPI is a measure of both ocean
basins combined and is included in this section (following the linear results of ENSO) for

comparative purposes.

The focus in the following sections is on the three response variables discussed previously
in this chapter (rainfall, upper-layer and lower-layer soil moisture). Next is a discussion of the
spatial correlations in the four regular seasons (Section 4.4.3.a), followed an analysis the lagged

relationship (Section 4.4.3.b).

4.4.3.a Spatial correlations

Rainfall has a strong relationship with indices from the Indian Ocean in JJA and SON
(Figure 4.20), while there are few significant correlations in DJF or MAM, consistent with the
development of the IOD (Saji et al. 1999) and previous research (Risbey et al. 2009). In MAM,
there is a significant negative correlation between NECBF and the DMI (Table 4.5) reflected in
the spatial analysis (Figure 4.20). In DJF, there are some regions of positive correlation between
rainfall and the DMI in northeast Australia (GoC, NEC, NECBF). Negative correlations
between Region C and area-averaged rainfall extend further south to include SEC, MDBW and
MDBA in addition to GoC, NEC and NECBF. While significant correlations in DJF are not
widespread both indices change sign in this season compared to JJA and SON (Table 4.5 and
Figure 4.20).

The strongest correlations for SEA in both JJA and SON are with the TPI, likely due to the
incorporation of both Pacific and Indian Ocean variability in this index. Correlations with
Region C are stronger than those with the DMI due to the proximity of Region C to Australia,
while the DMI is partly based on remote SST anomalies. The correlation with the TPI is
positive, suggesting that as the TPI increases rainfall also increases. Because the TPI is the
difference between the maritime continent SST and the average of two SST boxes (from the
Indian and Pacific Oceans) a positive index suggests that the maritime continent is warmer than
the remote boxes. The DMI is the difference between SST anomalies in boxes in the western
and eastern Indian Ocean, so that a positive DMI means the western Indian Ocean is warmer
than the eastern part. As such, as cooler SST near Australia are associated with decreased
rainfall and a negative correlation. Region C has a positive relationship with rainfall, as warmer
SST in the ITF region is associated with increased rainfall. The spatial extent of the TPI is

similar to the pure Indian Ocean indices, suggesting that the Indian Ocean is an important
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component of the TPI, and the close relationship between the effects of the Indian and Pacific

Oceans on Australia through changes to the maritime continent region.

In JJA significant correlations extend over southern Australia. Significant correlations with
the DMI are confined to southwest Western Australia and southeast Australia (SEC, MDB
regions, TAS, SAG< 10), while the influence of Region C and the TPI extends further into
northern Australia. Region C has significant positive correlations with all area-averaged regions
in JJA; this suggests that warm SST anomalies in the maritime continent region are associated
with increased rainfall over the whole continent, even the regions in southern Australia that
received frontal rainfall. The spatial pattern of the significant correlations between rainfall and
the Region C index in JJA is similar to the May correlation discussed in (Cai and Cowan 2008a)
which suggests that May is more representative of a JJA pattern than a MAM pattern, possibly
due to interactions with the STR. This pattern is likely linked to northwest cloud bands (Cai and
Cowan 2008a, Nicholls 1989) and the high-moisture flows that veer north eastward from tropics

to southeast Australia (Cai and Cowan 2008a)

All three indices affect both eastern and western Australia in JJA, although this is not the
case in SON when only the eastern half of the continent shows significant correlations (Figure
4.20). There are significant negative (positive) correlations between upper-layer soil moisture in
all (all but 10) area-averaged regions and DMI (Region C, Table 4.5) that are not reflected in
the spatial pattern (Figure 4.20).
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Figure 4.20. Correlation between gridded Australian rainfall and three indices
of Indian Ocean variability - Tri-pole index (top), the DMI (middle)
and Region C (bottom) - in MAM, JJA, SON and DJF, over the
period 1900 — 2009. Coloured regions indicate correlations that are
significant at the 5% significance level.
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Table 4.5. Correlations between area-averaged rainfall in 12 drainage

divisions and two indices of Indian Ocean variability - the DMI
(DMI) and Region C (RegC) - in MAM, JJA, SON and DJF, over the
period 1900 — 2009. Bold indicates correlations that are significant
at the 5% significance level.

Reg- L DMI: RegC: | DMI: RegC: | DMI: RegC: [ DMI: RegC:
. Division
0n MAM MAM JJA JJA SON SON DIJF DIJF
= TiS 0.06 -0.16 -0.03 0.38 | -0.44 0.47 0.10 -0.13
5
Z GoC 0.00 -0.17 0.02 0.31 -0.44 0.50 0.24 -0.21
‘g NEC -0.18 -0.09 -0.10 0.29 | -0.39 0.49 0.21 -0.19
£
‘ZD NECBF -0.25 -0.03 -0.12 0.37 | -0.36 0.48 0.21 -0.19
SEC -0.09 -0.01 -0.19 0.28 | -0.30 0.34 0.10 -0.22
‘g MDBW -0.1 0.04 -0.33 0.52 -0.46 0.44 0.09 -0.20
£
=
A MDBA -0.18 0.06 -0.33 0.59 | -0.34 0.43 0.14 -0.20
MDBSA -0.10 -0.01 -0.35 0.60 | -0.39 0.45 0.14 -0.10
- TAS 0.00 0.01 -0.15 0.31 -0.30 0.34 0.02 -0.08
B
? SAG -0.09 0.04 -0.39 0.56 | -0.35 0.39 0.09 -0.11
- SWC 0.00 -0.04 0.00 0.24 | -0.22 0.22 0.02 0.05
2
10 -0.01 0.07 -0.26 0.33 -0.15 0.05 -0.05 0.04

The seasonal spatial patterns of significant correlations between indices of Indian Ocean
variability and rainfall are also evident in the upper-layer soil moisture seasonal cycle (Figure
4.21). Similarly to rainfall, the relationship between Indian Ocean variability and upper-layer
soil moisture is much stronger and more widespread in the extended cool season (JJA and SON)
compared to the warm season (DJF and MAM). However, warm season correlations with upper-

layer soil moisture are more widespread than they were for rainfall, particularly in coastal

regions.
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The relationship is strongest in JJA in the southern half of the continent, particularly for
the TPI. Significant correlations for the TPI stretch further north, while those for Region C are
centred on SEA and aligned in a northwesterly orientation. In SON the relationship is again
confined to the eastern half of the continent. The correlations are stronger with the TPI than the
Indian Ocean indices, showing the importance of combined Indo-Pacific forcings for southeast
Australian hydroclimatic variability. In many places the relationship in SON is stronger than the
relationship with rainfall, for example, the DMI shows more significant correlations for upper-

layer soil moisture on the east coast.

The change in the sign of the relationship over eastern Australia in DJF is again evident,
although for upper-layer soil moisture the correlations with the DMI are more extensive than

they were for rainfall.

The simultaneous correlation here is stronger than the simultaneous correlation for rainfall,
showing that variability in the Indian Ocean has a greater relationship with upper-layer soil

moisture than it does with rainfall, even though the two patterns have a similar spatial extent.
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Figure 4.21. Correlation between gridded Australian upper-layer soil
moisture and three indices of Indian Ocean variability - Tri-pole
index (top), the DMI (middle) and Region C (bottom) - in MAM, JJA,
SON and DJF, over the period 1900 — 2009. Coloured regions
indicate correlations that are significant at the 5% significance
level.

TPI

DMI

Region C
T

The relationship between lower-layer soil moisture and Indian Ocean variability is less
spatially extensive than was seen previously for rainfall or upper-layer soil moisture (Figure
4.22). Again the relationship is most prominent in JJA and SON, although there are significant

correlations reaching into DJF, particularly for the DMI although they are of the same sign as
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the cool season correlations. Significant correlations for the TPI and the DMI are centred on
southeast Australia where a positive DMI (TPI) is associated with decreased (increased) soil
moisture. There are significant correlations in the southwest of Western Australia for both the
DMI and the TPI but a much greater affect is seen in the west with Region C. In all seasons the
strong correlations in central Western Australia that suggests increasing SST anomalies in
Region C is associated with increased lower-layer soil moisture in Western Australia; however
it should be kept in mind that data quality in this region is low as there are few observations in

this area which can cause clustering around observation points.
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Figure 4.22. Correlation between gridded Australian lower-layer soil moisture
and three indices of Indian Ocean variability - Tri-pole index (top),
the DMI (middle) and Region C (bottom) - in MAM, JJA, SON and
DJF, over the period 1900 — 2009. Coloured regions indicate
correlations that are significant at the 5% significance level.

This section has outlined the relationship between indices of Indian Ocean variability with
gridded and regional Australian rainfall. Differences in the magnitude, spatial extent and sign of
the relationship are evident between the cool (JJA and SON) and warm (DJF and MAM) season
for rainfall, upper-layer and lower-layer soil moisture. In particular, rainfall and upper-layer soil
moisture change sign between SON and DJF while lower-layer soil moisture is of the same
sign. This may suggest persistence in lower-layer soil moisture that is not evident in the other

response variables. This issue will be discussed further below (Section 4.4.3.b).
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4.4.3.b Lagged correlations

The previous section (4.4.3.a) showed that the influence of the Indian Ocean was strong in
both SON and JJA. This section will outline the correlations between SON response variables

and JJA indices of Indian Ocean variability.

The correlations between rainfall and the TPI and Region C are weaker at the one-season
lead-time but still widely significant, while the DMI correlations decay markedly (Figure 4.23).
The area-averaged MDB correlations (Figure 4.24) reiterate the strength of the TPI — rainfall
relationship, particularly compared to the DMI. These two indices display a similar pattern of
lagged relationship, although the TPI is considerably stronger, both decaying quickly from the
simultaneous maximum. The correlation with Region C decays more slowly for the preceding
two months and it is not until JJA that it drops away quickly. As rainfall is expected to respond
immediately to tropical SST variations, as was seen for ENSO, the lack of lagged relationship
with the 10D suggests limited seasonal persistence. The significant relationship with Region C
out to the two-month lead-time suggests that when SST anomalies in the maritime continent

region develop in JJA they generally persist through to SON.
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Figure 4.23. The simultaneous correlation between gridded SON rainfall and
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three indices of Indian Ocean variability - Tri-pole index (top), the
DMI (middle) and Region C (bottom) - in SON (left) and the ‘lagged’
correlation between SON rainfall and the Indian Ocean indices in
JJA (right, three-month lead-time), over the period 1900 — 2009.
Coloured regions indicate correlations that are significant at the
5% significance level.
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Figure 4.24. The correlation between SON MDB rainfall and three indices of

Indian Ocean variability - Tri-pole index (black), the DMI (red, sign
of the correlation reversed) and Region C (blue) - with increasing
lead-time, over the period 1900 — 2009. The simultaneous
correlation is shown at SON and the horizontal coloured lines

indicate the simultaneous correlation level. Correlations exceeding

+/-0.2 are significant at the 5% significance level.

95

The lagged correlations between upper-layer soil moisture and Indian Ocean variability are

stronger than those for rainfall (Figure 4.25). The lagged correlations are strongest with the TPI
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and Region C, particularly in northern Australia and Victoria, although the strength of the most
significant correlations is reduced from the simultaneous level. The DMI again shows little
lagged relationship with some significant correlations over southeast Australia, although the
lagged relationship is stronger with upper-layer soil moisture than it was with rainfall. The
MDB area-averaged (Figure 4.26) correlations again show the TPI and the DMI decaying at a
steady rate until MAM. Region C shows some increases in correlation over the preceding two

months (ASO and JAS) before decaying to zero in MAM like the DMI.
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Figure 4.25. The simultaneous correlation between gridded SON upper-layer
soil moisture and three indices of Indian Ocean variability - Tri-pole
index (top), the DMI (middle) and Region C (bottom) - in SON (left)
and the ‘lagged’ correlation between SON upper-layer soil moisture
and the Indian Ocean indices in JJA (right, three-month lead-time),
over the period 1900 — 2009. Coloured regions indicate correlations
that are significant at the 5% significance level.
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Figure 4.26. The correlation between SON MDB upper-layer soil moisture and
three indices of Indian Ocean variability - Tri-pole index (black), the
DMI (red, sign of the correlation reversed) and Region C (blue) -
with increasing lead-time, over the period 1900 — 2009. The
simultaneous correlation is shown at SON and the horizontal
coloured lines indicate the simultaneous correlation level.
Correlations exceeding +/-0.2 are significant at the 5% significance
level.

The gridded and area-average correlation for lower-layer soil moisture (Figure 4.27 and
Figure 4.28) show that the season lagged correlations for the TPI are of a similar spatial extent
to the simultaneous correlation but appear to be of increased magnitude, particularly in
southeast Australia. Similarly, while the DMI decreases spatial extent it appears to increase in
magnitude across southern Australia. The correlations with Region C in southeast Australia
have increased in both extent and magnitude. For all three indices of Indian Ocean variability,
there is no relationship with the eastern coastal strip. The area-averaged MDB lagged
correlations highlight the strong lagged relationships between the TPI and Region C.
Correlations with both indices increase in strength from the simultaneous correlation until MJJ.
The simultaneous correlation with lower-layer soil moisture in the MDB with the TPI is r =
0.48, this increases to a maximum in JJA (r = 0.53). Region C increases from the simultaneous
correlation (r = 0.41) to the maximum of r = 0.51 in JAS. The DMI does not increases from its
simultaneous maximum correlation of r = 0.40 and although it remains reasonably steady for the
preceding season (ASO) it decays quickly. This shows that the TPI and Region C have the
strongest lagged relationships with lower-layer soil moisture both across eastern Australia and

in the MDB specifically.
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Figure 4.27. The simultaneous correlation between gridded SON lower-layer

soil moisture and three indices of Indian Ocean variability - Tri-pole
index (top), the DMI (middle) and Region C (bottom) - in SON (left)
and the ‘lagged’ correlation between SON lower-layer soil moisture
and the Indian Ocean indices in JJA (right, three-month lead-time),
over the period 1900 — 2009. Coloured regions indicate correlations
that are significant at the 5% significance level.
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Figure 4.28. The correlation between SON MDB lower-layer soil moisture and
three indices of Indian Ocean variability - Tri-pole index (black), the
DMI (red, sign of the correlation reversed) and Region C (blue) -
with increasing lead-time, over the period 1900 — 2009. The
simultaneous correlation is shown at SON and the horizontal
coloured lines indicate the simultaneous correlation level.

Correlations exceeding +/-0.2 are significant at the 5% significance
level.

This section has outlined the seasonal variability in the relationship with Indian Ocean
indices and hydroclimatic variability in Australia. In particular, differences between in the
magnitude, spatial extent and sign of the relationship were noted between the warm and cool
seasons for rainfall and upper-layer soil moisture, while the relationship with lower-layer soil
moisture remained in the same sign. Lagged correlations were present for rainfall and soil
moisture, likely stemming from the persistence of Indian Ocean variability from JJA to SON.
The next section (4.4.4) will discuss linear relationships between indices of large-scale

variability.

4.4.4 Linear relationships between predictor variables

The relationships between indices of large-scale modes of climate variability vary
seasonally (Figure 4.29). As expected the highest correlations are found between indices of
ENSO in all seasons; indices of Indian Ocean variability are also highly correlated, particularly
the DMI with each of the poles (IOD-E and I0D-W) and IOD-E with the NWS region due to
their proximity. The TPI is more strongly correlated with the DMI than with indices of ENSO.
The facets of the STR are highly correlated in JJA and SON, with some relationship in MAM
and little in DJF. Indian and Pacific Ocean indices are mostly highly correlated in SON with

less relationship in JJA.

This section has shown that there are strong linear relationships between indices used to
describe all large-scale climate drivers in most seasons. These strong linear relationships

between the indices that are used to characterise large-scale modes of climate variability can
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obscure more subtle interactions. The following section (4.5) will summarise the conclusions

from this chapter.
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Figure 4.29. The correlation coefficients as percentages (r * 100) between
indices of large-scale modes of climate variability (see Table 4.1 in
JJA (A — upper triangle), SON (A - lower triangle), MAM (B — upper
triangle) and DJF (B — lower triangle), over the period 1900 — 2009.
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4.5 Conclusions

This chapter has outlined the linear relationships between indices of remote (i.e. ENSO and
IOD) and regional (i.e. STR) large-scale variability and Australian hydroclimates. Although all
relationships are consistent with previous research (Chowdhury and Beecham 2013,
Drosdowsky and Chambers 2001, McBride and Nicholls 1983, Nicholls 1989, Risbey et al.
2009, Timbal and Drosdowsky 2013, Timbal and Hendon 2011, Ummenhofer et al. 2011), it is
important to establish the nature of the linear relationship using the relatively new AWAP data
set and the indices as defined in Chapter 1. This validated the novel AWAP data set and

provided a foundation for more complex analyses in later chapters.

The relationship between facets of the STR (i.e. position and intensity) and Australian
rainfall follows a distinctive seasonal cycle, peaking in JJA. In all seasons, the correlation
between hydroclimatic variability and STR intensity is stronger than the correlation with STR
position. Increased STR intensity is generally associated with below average rainfall, but there
are some regions and seasons when the relationship changes sign. This is also true for the
relationship with STR position, where the sign of the relationship depends on the mean position
of the STR. The mean position of the STR changes seasonally and is thought to have changed
over the instrumental record as the tropics have broadened (Seidel et al. 2007). There is very
little persistence in correlations between rainfall and facets of the STR at increasing lead-time,
likely due to the high-frequency nature of the atmospheric variability. In contrast, there are
significant relationships between soil moisture (upper and lower) and indices of STR variability
at a one-season lead-time. The lack of significant relationships between rainfall and the STR at
one-season lead-time, suggests that hydrological processes are responsible for the significant

correlations with soil moisture and lagged indices of the STR.

The relationship between the tropical modes of variability and Australian hydroclimates
also adheres to a seasonal cycle. The relationship with ENSO peaks in SON but is also
significant and widespread over eastern Australia in JJA and DJF. El Nifio events are associated
with reduced rainfall and soil moisture across eastern and northern Australia. The persistence of
ENSO from onset in late MAM or early JJA translates into significant correlations at the one-
season lead-time for SON rainfall, upper-layer and lower-layer soil moisture. Indian Ocean
variability behaves in a similar way, with the relationship with rainfall and soil moisture
peaking in JJA and SON, with the significant correlations focused in southern (eastern)
Australia in JJA (SON). A positive IOD event, or cooler SST anomalies in the maritime

continent region is associated with reduced rainfall in southern Australia. The strength of the
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relationship between indices of Indian Ocean variability and soil moisture increases with

increasing lead-time.

These strong linear relationships are the foundation of our understanding of Australian
hydroclimatic variability (Drosdowsky and Chambers 2001, McBride and Nicholls 1983,
Risbey et al. 2009) and they have formed the basis of seasonal forecasts in Australia. The
persistence of the tropical modes from onset underpins the lagged relationships that are
exploited in seasonal forecasting (Drosdowsky and Chambers 2001).This chapter has shown
that lower-layer soil moisture has significant linear relationships at lead-times of up to several
months, often exceeding the lagged linear relationship with rainfall. The potential increased

predictability of lower-layer soil moisture over rainfall will be discussed further in Chapter 7.

These strong linear relationships have been valuable for increasing understanding of the
drivers of Australian climate yet they don’t tell the whole story. Strong correlations between
large-scale modes of climate variability and Australian rainfall, in the range of r = 0.5 - 0.7, are
reported here and elsewhere in the literature (McBride and Nicholls 1983), but these linear
relationships only explain 30 — 40% of the variability. This leaves a majority of the variability
unexplained, and while stochastic noise is an important factor, it is likely that non-linear
interaction between various climate drivers plays a large role. In addition, it is likely that the
strength of the correlations between large-scale modes of climate variability mask subtleties in

the relationships between Australian hydroclimatic variability and large-scale climate drivers.

This chapter has outlined the seasonal and spatial linear relationships between regional and
remote large-scale modes of climate variability and Australian hydroclimates, which subsequent
chapters will build upon. The following three chapters (Chapters 5 — 7) will use tree-based

methods to further explore nuances in the drivers of Australian climate and hydrology.
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Chapter 5 : Interactions between
tropical and sub-tropical climate
modes of climate variability

5.1 Chapter summary and context

The previous chapters have provided an introduction to Australian climate variability and
the large-scale modes of climate variability (or ‘climate drivers’) examined throughout this
thesis (Chapter 2), followed by an outline of the methods (Chapter 1) and a discussion of the
linear relationships between large-scale modes of climate variability and Australian
hydroclimatic variability (Chapter 4). The purpose of Chapter 5 is twofold. Firstly, the chapter
will introduce the reader to the novel statistical method, Classification and Regression Trees
(CART). Several key features of the CART method will be discussed, including the differences
between trees constructed from categorical and continuous data (Section 5.3.2.a), node purity
(Section 5.3.2.b), the impact of tree size (Section 5.3.2.c), interactions between predictor

variables (Section 5.3.2.d) and how composite analysis is used in this thesis (Section 5.3.2.¢).

Secondly, the spatial and seasonal variability of relationships between tropical and sub-
tropical predictor variables and regional rainfall is discussed and the most important predictor
variables used to classify rainfall regimes are identified (Section 5.4.1). Following this broad
outline, a case study methodology is adopted to explore interactions between predictor variables
that influence regional Australian hydroclimatic regimes. The tree-based models are able to give
more nuanced information about the discrete events that is not available from a linear analysis.
This additional insight shows that the strength of the tropical teleconnection is key to
transmitting the impacts of tropical variability to Australian rainfall and that interactions
between tropical modes of variability and the STR can modulate the impacts of tropical
variability. This chapter introduces the importance of STR variability, with the focus here on
STR intensity. Further discussion of interactions between facets of STR variability (i.e. position

and intensity) is found in Chapter 6.

5.2 Introduction

This chapter will introduce CART with a description of the method and a thorough
examination of the relationship between indices of tropical and sub-tropical modes of climate
variability and hydroclimatic regimes across Australia. This is a multi-dimensional and

conceptually difficult problem. The relationship between tropical climate drivers (such as
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ENSO and the I0OD) and regional phenomena with Australian hydroclimatic variability was
outlined in Chapter 2. There is limited research into the interactions between tropical and sub-
tropical climate drivers that influence regional Australian hydroclimatic regimes, although it has
been identified that phases changes between ENSO, the IOD and the Southern Annual Mode are
associated with changing frequency of wet and dry synoptic types (Verdon-Kidd and Kiem
2009b).

This chapter begins broadly with an introduction to the CART method. Firstly in Section
5.3.2 examples are presented that show various features of the tree-based method; a comparison
of Classification and Regression Trees is presented along with definitions of CART terminology
(node purity, tree structure, terminal nodes, split variables and predictor variable importance)
and a discussion on how tree size influences response variable regimes, interactions between

predictor variables composite analysis.

Next, in Section 5.4.1, is an analysis of rainfall in 12 spatially aggregated regions across
the Australian continent (see Chapter 1 for a discussion of the regions) in the four traditional
seasons (MAM, JJA, SON, DJF). The spatial and temporal variability in tree-based models

classified from all predictor variables are discussed.

Finally, in Section 5.4.2, a pairwise analysis of predictor variables is presented to discuss
interactions between predictor variables that influence Australian rainfall regimes. A case study
approach is taken to explore the additional information that can be gained by an analysis with
tree-based models. The focus is on interactions between tropical (ENSO and IOD) and sub-

tropical (STR) climate drivers in JJA and SON.

Tropical — sub-tropical interactions are the focus of this chapter, and Chapter 2 outlined the
large-scale features that influence Australian climate variability, i.e. ENSO, the IOD and the
STR. The strong linear relationships between these climate drivers (discussed in Chapters 2 and
4) make separating the relative influences and relevant interactions between climate drivers

difficult.

The remainder of the chapter is structured in the following way; Section 5.3 is a discussion
of the data sets and methods used in this chapter, including an example based introduction to
CART terminology and methodology. This is followed by a results section that examines the
tree-based models defining regional Australian rainfall regimes from all predictor variables
(Section 5.4.1) and the pairwise analysis of interactions between tropical — sub-tropical climate
drivers that influence rainfall regimes (Section 5.4.2). Finally, discussion and conclusions are

presented in Section 5.5.
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5.3 Data sets and methods

A detailed discussion of the data sets and methods used throughout the thesis can be found

in Chapter 3. This section will outline the specific data sets and methods used in this chapter.

5.3.1 Data sets

Section 5.4.1 classifies rainfall in all 12 regions (Figure 5.1 and Table 5.1) from all 14

predictor variables defined in Chapter 3, and shown below in Table 5.2.

NECS NECBF SEC TAS MDBW MDBAMDBSA SAG SWC 10 TiS GoC NA

Figure 5.1. The 12 Australian drainage divisions (regions) that are area-
average and used as response variables in this Chapter. See Table
5.1 for region names.
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Table 5.1. Names, abbreviations for each of the 12 regions (drainage
divisions) used as response variables. Region abbreviations here
correspond to the regions shown in Figure 5.1.

iion (Abbreviation) N ﬁ)glr"n
——— Table 5.2. Indices of large-scale
S) 1 modes of climate variability used
ataria (GoC) 2 as predictor variables in Chapter 5.
st — Sea (NECS) 3a See Chapter 3 for definitions of
st — Burdekin/Fitzroy (NECBF) 3b each index.
1g Basin Agricultural (MDBA) 4a
ig Basin Semi-Arid (MDBSA) 4b
ig Basin Wet (MDBW) 4c In Section 5.4.2 a subset of predictor
?; (SEC) 2 variables (i.c. Nifio 3.4, DMI and STR-I),
ian Gulf (SAG) 7 representing the major climate drivers
(aIs(t)§SWC) g (ENSO, IOD and STR, respectively), are
\
—
ame Group Reference
lifio 3 Pacific Ocean (Trenberth 1997)
lifio 3.4 Pacific Ocean (Trenberth 1997)
lifio 4 Pacific Ocean (Trenberth 1997)

il Nifio Modoki Index (EMI)
outhern Oscillation Index (SOI)
‘ri-pole Index (TPI)

tegion C

licholls’ SST gradient
Jorthwest Shelf (NWS)

dipole Mode Index (DMI)

YMI — Eastern Pole

YMI — Western Pole

‘TR — Intensity

Pacific Ocean
Pacific Ocean

Pacific and Indian Ocean

Indian Ocean
Indian Ocean
Indian Ocean
Indian Ocean
Indian Ocean
Indian Ocean

STR

(Ashok et al. 2007)

(Troup 1965)

(Timbal and Hendon 2011)
(Cai and Cowan 2008a)
(Nicholls 1989)

(Timbal and Murphy 2007)
(Saji et al. 1999)

(Saji et al. 1999)

(Saji et al. 1999)

(Drosdowsky 2005, Timbal and

TR — Position

Drosdowsky 2013)
(Drosdowsky 2005, Timbal and

STR Drosdowsky 2013)

used to explore interactions between tropical (ENSO, I0OD) and sub-tropical (STR) climate
drivers and regional rainfall regimes. Fewer response variables are also used, with the focus on

rainfall in MDBSA in JJA, SAG in JJA and SEC in SON.

In Section 5.3.2, the major features of the tree-based models are illustrated with JJA
rainfall in the SEC, where possible. However, additional response variables are selected from
the 288 tree-based models constructed; 3 response variables (rainfall, upper-layer and lower-
layer soil moisture) x 4 seasons (MAM, JJA, SON, DJF) x 12 regions (Figure 5.1 and Table 5.1)
x 2 tree structures (classification and regression trees). See Appendix A and B on the
accompanying CD for additional tree-based models and composite anomaly patterns,
respectively. The JJA season is chosen to highlight influences between tropical and sub-tropical
climate drivers, because this is the season when both tropical modes and the STR influence

Australian rainfall (Risbey et al. 2009, Timbal and Drosdowsky 2013, Whan et al. 2013).
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In this chapter the reanalysis product is used to examine the atmospheric response for
climate regimes is the 20" Century Reanalysis Product (Compo et al. 2011). Various
atmospheric fields were averaged across the years classified into each regime, including 850 and
200 hPa geopotential height anomalies, 500 hPa vertical velocity and 1000 hPa wind speed and

direction.

5.3.2 Methods

Classification trees are used in all sections of this analysis, except for a comparison with
regression trees in Section 5.3.2.a. All default control arguments for the ‘rpart’ function outlined
in Chapter 3 (Table 3.3.2) are used except for the ‘minsplit’ and ‘maxdepth’ arguments.
Minsplit controls the minimum number of observations in a node for a split to be attempted.
This is changed from the default value (i.e. 20) to 10. This means that additional splits will be
attempted, compared to the default value, if the node has between 10 and 20 cases. In addition,
the ‘maxdepth’ argument controls the size of the tree. The use of cross-validation to select the
optimum tree size is a feature of CART that is generally not implemented in this chapter as tree-
size is set to maintain consistency and interpretability of trees. Tree-size is varied in Section
5.3.2.c to explore the influence of different tree sizes. Maxdepth is generally set at three so that
interpretability of interactions between predictor variables is maintained. ‘Variable importance’
is defined from the first split, as the predictor variable with the strongest relationship with the

response variable is chosen for the first split.

The remainder of this section (Sections 5.3.2.a - 5.3.2.¢) is comprised of a discussion of the
major features of CART. Firstly, this section will outline the differences and similarities
between classification and regression trees, justifying the selection of classification trees for
further analysis. Second, selected tree-based models are used to discuss the major features of the
method. Features of the CART method include node purity, tree structure and how it relates to
linear relationships, the information that can be gained from the years classified into each

terminal node and both hydroclimatic and atmospheric composites of the regimes.

5.3.2.a Tree structure — classification and regression trees

CART is comprised of two tree-based methods, classification and regression trees, that are
used when the response variable is categorical or continuous, respectively. This section outlines
some of the similarities and differences between regression trees constructed from continuous
area-averaged rainfall and classification trees constructed from terciles of the same rainfall time
series. JJA rainfall from the SEC will primarily be used in this section, with some additional

examples from MDBA and the SWC.
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The degree of similarity between corresponding classification and regression trees varies
greatly. In some cases the classification and regression trees are very similar, e.g. upper-layer
soil moisture regimes in MDBA in JJA are both classified from variability in the Tripole index
(Figure 5.2). In others they are very different, for example, the classification tree for MDBSA in
JJA requires information from both the Tripole index and the SOI, while the regression uses
Region C and STR-I to define rainfall regimes (Figure 5.2). A full description of classification
trees is given in Section 3.3.2. In Figure 5.2a, the colours (red, green, blue) of the nodes
represent the regime (‘dry’, ‘average’ or ‘wet’, respectively) that the node has been assigned to
by the ‘majority rule’. For example, the ‘wet’ regime in this tree contains 1 dry, 3 average and

18 wet years so the terminal node (i.e. a node with no further splits) is classified as a ‘wet’

regime.
Classification Trees Regression Trees
a) o b) .
{or 9 s [ he110
Tripole < 0.27 Tripole <-0.39
>=0.27
>=0.27
>=-0.39
(%)
c) d) —5415

RegionC < -0.36

Tripole <-0.39
>=-0.39

avg STRI>=1.9
23 37 36

SOI<83

6]
dry avg wet
1400 22 34 22 1314
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Figure 5.2. The classification (a and c) and regression (b and d) trees
defining JJA MDBA upper-layer soil moisture regimes (a and b)
and JJA MDBSA rainfall regimes (¢ and d), from a suite of 14
predictor variables (Table 5.2), over the period 1900 — 2009. The
number of years classified into the dry (red), average (green) and
wet (blue) regimes is marked (classification trees only). The
number of years classified into the regime and mean of these years
are given in the leaves (regression trees only).

Differences between the classification and regression trees highlight the instability of the
tree-based methods (Hastie et al. 2001) associated with their propensity to overfit data.
Differences between the classification and regression trees stem solely from the aggregation of
continuous response variables into terciles with the top, middle and bottom thirds categorised as
wet, average and dry years, respectively (Figure 5.3). The degree of similarity between the two

trees is largely dependent on intrinsic characteristics of the time-series.

600

200

Rainfall (mm)

\.’

-400

T T T
1900 1920 1940 1960 1980 2000

Years

Figure 5.3. The time series of JJA SEC rainfall anomalies over the period
1900 - 2009, with years assigned to the dry (red), average (green)
and wet (blue) categories marked.

Despite the differences in the predictor variables chosen to define regimes, the years in
each node are often similar. This shows that while the trees may choose to define hydroclimatic
regimes from different predictor variables, the strong relationships between indices of the same
or different climate drivers means that similar teleconnections are being drawn upon. For
example, the classification tree defining SEC JJA rainfall regimes (Figure 5.4) requires
information from STR-I and Nifio 4. On the other hand, the regression tree (Figure 5.4) defines
rainfall regimes from variability in the SOI and STR-I. The “terminal nodes” (i.e. the nodes of
the tree that have no further divisions) of both trees that are classified as “dry” (the red terminal
nodes in Figure 5.4) are defined during strong El Nifio conditions (Nifio 4 > 0.47°C for the
classification tree and SOI < -6.7 for the regression tree) that occur when the STR is neutral or

strong (STR-I > -1.5 for the classification tree or STR-I > 1.9 for the regression tree). The
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regression tree uses neutral or positive SOI and weak STR-I to define a wet terminal node (the
regression tree blue terminal node in Figure 5.4), while the classification tree uses only weak
STR-I to define the wet regime (the classification tree blue terminal node in Figure 5.4). Despite
differences in the details of the tree structures, similar years are classified from similar
relationships with indices of large-scale variability. Both trees built to predict categorical and
continuous JJA rainfall in SEC have wet and dry regimes with similar years due to the broadly

similar tree structures; in fact the wet terminal nodes include the same 19 years.

“60e-15
dry (n=110)
37 37 36

SO0l <-6.7

STRI>=-1.5

dry
36 34 21

N4 >=0.47
<047

dry avg wet
110 1 25 34 20 1315

Figure 5.4 The classification (left) and regression (right) trees defining JJA
SEC rainfall regimes, from a suite of 14 predictor variables (Table
5.2), over the period 1900 — 2009. The number of years classified
into the dry (red), average (green) and wet (blue) regimes is marked
(classification tree only). The number of years classified into the
regime and mean of these years are given in the leaves (regression
trees only).

Terminal nodes in classification trees are classified into one of the original terciles of the
response variable (i.e. dry, average, wet) according to the ‘majority rule’ that assigns terminal
nodes to the group with the most members present (Firth et al. 2005). Terminal nodes in
regression trees are assigned to the mean of all years classified into the node. Here the terminal
nodes with the largest (smallest) rainfall anomalies are called the “wet” (“dry”) regimes. In
Figure 5.4 the regression tree classifies 19 years into the wet regime and these 19 years have a
mean rainfall anomaly of 139 mm. Information about the root mean square error (RMSE) of
each terminal node can be extracted that shows the range of scores is smallest in the dry regime
and largest in one of the average regimes. The assignment of terminal nodes into predetermined
classes, in a classification tree, facilitates model evaluation as ‘skill’ is defined by how

successfully the tree has separated homogeneous regimes.

This section has discussed the differences between classification and regression trees (i.e.
response variable structure) and shown that the two methods can give similar results despite

differences in the details of trees. Previous research has established that tree-based methods can
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be unstable and are sensitive to small changes in the data set (Hastie et al. 2001); here we show
that differences in data format (i.e. continuous and categorical) can result in different tree
structures, but often with similar years assigned to terminal nodes. This section has shown that
changing the format of the response variable does affect the characteristics of the final tree, but
that the trees can be broadly similar despite these differences. The choice of tree structure also
depends on the purpose of modelling. If the model is attempting to predict the amount of
precipitation then a regression tree needs to be used. Yet classification trees can be used to
increase understanding of rainfall regimes (i.e. dry, medium or wet). Classification trees are
chosen to explore interactions between indices of large-scale variability and Australian
hydroclimates because they are well suited to the event-based nature of rainfall and the large-

scale conditions that make rainfall more or less probable.

5.3.2.b Node purity

‘Node purity’ it is the criterion against which ‘splits’ (or divisions in the data) are
evaluated, either though the Gini Index in classification trees or through RMSE for regression
trees. The definition of node purity, particularly for classification trees, is reasonably
straightforward and this section will discuss how it is used in this thesis and the type of

information that can be drawn from it.

CART identifies the splits that minimise the mean node impurity, as measured by the Gini
Index. Splits that are chosen based on the Gini Index so that node impurity is decreased, but this
does not always result in “useful” terminal nodes (i.e. nodes with no further splits) that are able
add insight about hydroclimatic regimes. However, we can assess how useful the chosen splits
are by looking at the node purity. For example, DJF rainfall in the NECBF region (Figure 5.5) is
classified solely on indices of SST anomaly from the eastern (IODE) and western (IODW)
Indian Ocean. Terminal Node 3 is a wet regime defined solely on eastern Indian Ocean SST
variability (IODE < -0.34°C) with 82% purity —14 out of 17 years are classified as ‘wet’. The
second split on SST anomalies in the western Indian Ocean (IODW < 0.44°C) increases the
purity of the tree by classifying a highly pure average terminal node, while also defining a dry
terminal node with low purity (41% - 35 dry, 28 average and 22 wet years). It is unlikely that
composite analysis of the atmospheric response in heterogeneous terminal nodes will be able to

provide additional insight when the signal to noise ratio is so small.
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dry
37 36 36

IODE >=-0.34

<-0.34

IODW < 0.44
>=0.44

dry avg wet
35 28 22 160 1214

Figure 5.5. The tree classifying DJF rainfall regimes in the NECBF, from a
suite of 14 predictor variables, over the period 1900 — 2009. The
number of years classified into the dry (red), average (green) and
wet (blue) regimes is marked.

This example shows that CART does not automatically classify homogeneous
hydroclimatic regimes that are useful for further analysis of the associated causal mechanisms.
Throughout this analysis node purity is considered high, moderate or low when nodes are >
80%, between 50 and 80% and < 50% pure, respectively. CART is a statistical method that

follows certain rules; it can be a useful tool but should not be used as a “black box”.

5.3.2.c Tree structure — tree size

Here we compare the effect of tree size on the classification of SEC rainfall regimes in
JJA. “Tree size” refers jointly to the number of splits and the number of terminal nodes in a tree.
The issue of tree size is closely related to the issue of when to assign “terminal” status to a node,
i.e. no further splits. Several factors may lead to the assignment of a terminal node, including
when the node comprises only one class of response variable (i.e. no splits make it more pure),
if the node has reached the minimum size so that further splitting would result in nodes that
were too small for analysis (the minimum size is 10 cases in this analysis), if there are no splits
that increase node purity or if additional splits obscure information that can be drawn from the

tree (Firth et al. 2005).

CART models are generally constructed through the growth of an overly-large tree that is
then pruned back to the desired size (De'ath and Fabricius 2000). Generally, dividing until no
further splits are possible grows a ‘maximal tree’. The maximal tree (given the control
arguments used in the analysis, see Table 3.4) for the SEC rainfall in JJA example is shown in
Figure 5.6 (with the minsplit criterion set to the default value). CART uses cross-validation and

a ‘complexity parameter’ to estimate the optimal tree size that minimises the relative cross-
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validated error (Figure 5.7). In this example, the optimum tree size is three (as this tree size has

the minimum cross validated error), with the tree pruned to this size shown in Figure 5.6.
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Figure 5.6. Two trees classifying JJA rainfall regimes in the SEC, from a
suite of 14 predictor variables, over the period 1900 — 2009. The
maximum tree (given the function control arguments outlined in
Chapter 3) is shown on the left and the pruned tree is on the right.
The number of years classified into the dry (red), average (green)
and wet (blue) regimes is marked.
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Figure 5.7. The relative cross-validated error for the trees of various sizes (1

to 7 split levels) classifying JJA SEC rainfall regimes, from a suite

of 14 predictor variables, over the period 1900 — 2009. The
complexity parameter (‘cp’) for each tree size is marked.

Tree size can also be controlled directly. This section compares trees that classify SEC
rainfall in JJA from all 14 predictor variables; the small classification tree in Figure 5.4 with
only three terminal nodes is compared with two larger trees that have four and nine terminal

nodes (Figure 5.8). In this example, increasing tree size does not alter the extreme wet and dry
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regimes classified in the smallest tree; no further classification of these regimes occurs in the
larger trees because additional division of the years in these highly pure nodes does not result in
a large increase in node purity. The larger trees, however, have additional division of the impure
average terminal node that contained 25 dry, 34 average and 20 wet years (Figure 5.4). In this
example, the smallest tree with three terminal nodes (Figure 5.4) and the tree with four terminal
nodes (Figure 5.8) are very easily interpretable, as they define rainfall regimes from two or three
different predictor variables. This example demonstrates that tree interpretability can be
maintained when tree size is increased. However, the largest tree (with nine terminal nodes)
shows that increasing tree size can inhibit interpretation of climatic regimes, while adding few
insights into physical mechanisms. Additionally, it is important to avoid building trees that are
large and over-fitting the data as this limits the generalisability of conclusions, in addition to
inhibiting model interpretation. Overly complicated trees with terminal nodes that either remain
relatively impure or have too few observations add little to our understanding of climatic
regimes. Information about subsequent splits and the further refinement of response variable
regimes is lost when using a smaller, simpler tree, but interpretability and the capacity to
explore the physical mechanisms between predictor variables are gained. This is why the

smaller tree is favoured in the remainder of this thesis.
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Figure 5.8. Two trees with three (left) and five (right) split levels, classifying
JJA rainfall regimes in the SEC, from a suite of 14 predictor
variables, over the period 1900 — 2009. The number of years
classified into the dry (red), average (green) and wet (blue) regimes
is marked.

This section has outlined two methods that can be used for controlling tree size, firstly,
through use of a complexity parameter that minimises relative cross-validated error, and
secondly, by directly limiting the size of the tree. For the remainder of this chapter, tree size is

controlled directly and the smaller trees are favoured for the advantages highlighted above.

5.3.2.d Tree structure — interactions between predictor variables

This section discusses some characteristics of the predictor variables chosen to separate
response variable regimes. Firstly, the predictor variable chosen for the first or primary split
indicates which predictor variable has the strongest relationship with the response variable; this
variable often, but not always, has the strongest correlation with the response data. This shows
that CART can draw from the linear component of the signal and validates the use of a classical
statistical framework to explore such relationships. CART is a “greedy algorithm” because it
selects the split to minimise the mean node impurity at each step, with no regard for subsequent
splits (Breiman et al. 1984). This means that subsequent splits are not dependent on preceding
splits and that they in turn indicate predictor variable importance for their particular parent-
regime.

Secondly, the recursive binary-partitioning nature of CART results in a somewhat clumsy
handling of linear relationships as multiple splits on single predictor variables represent linear
relationships. Figure 5.9 (left) is an example of a tree that classifies SON rainfall regimes in
northeastern Australia (NECBF) from linear splits on the SOI. None of the 11 other predictor
variables were selected to divide the response variable, suggesting that other predictor variables
were not able to decrease node impurity as much as the SOI. In this example, the linear splits on
the SOI reflect the known relationship with ENSO; when the SOI is negative (< -2.5) a
moderately pure dry regime is classified (64% purity). A highly pure wet regime is defined
when the SOI > 7 (80% purity). The tree structure and the high node purity when a more
extreme split point is chosen (i.e. SOI > 7, compared to SOI < -2.5) is consistent with a linear
relationship between ENSO and SON rainfall in NECBF, that is supported by a strong
correlation (r = 0.63). This suggests a relatively large portion of variability in the response

variable is explained by the linear relationship.

Finally, the combination of predictor variables that defines response variable regimes can

potentially give insight into important interactions between those predictor variables. For
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example, high values of STR-I define a dry regime for SON rainfall in TAS (Figure 5.9),
consistent with the linear relationship (r = -0.61). If splitting ceases when criteria determining
terminal node status have not been met (i.e. the tree has not reached maximum depth (controlled
directly through the CART function), or there are more than the minimum number of
observations in the node), this suggests that the node is terminal because no other splits increase
mean node purity, as is the case for the dry regime for TAS rainfall (Figure 5.9). The second
split draws information from the DMI and separates a wet regime and a second dry regime with
low and moderate purity, respectively. Here we see that when STR-I intensity is weak (< 0.94
hPa) information about Indian Ocean variability is required to differentiate wet and dry rainfall
regimes. It highlights the importance of the DMI, compared to ENSO, for this region in
southern Australia. This is a relationship that is obscured by the linear correlation analysis as the
two modes of variability have similar strength relationship with rainfall (DMI r =-0.30, SOI r =
0.31).

This section has outlined some typical behaviour of CART and their interpretation. It has
shown that tree-based models can extract information that is suggestive of a the non-linear
component of the observed variability, in addition to the linear component captured by the

correlation analysis.

dry dry
37 37 36 37 37 36
SOl <-2.5 STRI>=0.94
>=-2.5 <0.94
wet wet
| 7 24 32) 17 31 35
SOI<7 DMI >=0.18
>=7 <0.18

(6] [6]
dry avg wet dry dry wet
30 13 4 6 21 16 13 16 20 6 1 1045 7 27 30

Figure 5.9. The trees classifying SON rainfall regimes in the NECBF (left) and
TAS (right), from a suite of 14 predictor variables, over the period
1900 — 2009. The number of years classified into the dry (red),
average (green) and wet (blue) regimes is marked.

5.3.2.e Composite analysis

Composite analysis of response variable regimes and the associated atmospheric
conditions are a powerful part of a CART analysis. The years classified into each terminal node

are averaged to characterise the hydroclimatic and atmospheric response to combinations of
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predictor variables. Seasonally averaged atmospheric variables (anomalous 850 hPa and 200
hPa geopotential height, 500 hPa vertical velocity and 1000 hPa vector wind), extracted from
the 20™ Century Reanalysis Project (Compo et al. 2011), are averaged to indicate the likely

causal mechanisms associated with response variable regimes.

Section 5.3.2 has outlined the major features of CART and shown how the method is
implemented in this chapter. The following sections will discuss the tree-based models in

further detail.

5.4 Results

The results of the classification trees that define rainfall regimes from all predictor
variables are presented first (Section 5.4.1). This is followed by discussion of a series of case
studies defining rainfall regimes from combinations of predictor variables to explore the

influence of tropical — sub-tropical interactions on rainfall variability (Section 5.4.2).

5.4.1 Spatial and temporal variability of Australian rainfall
regimes classified from all predictor variables

This section outlines the temporal and spatial features of rainfall regimes classified from a
suite of 14 predictor variables. Seasonally and area-averaged rainfall regimes in each of the 12
regions were classified from a suite of 14 seasonally averaged indices of Pacific Ocean, Indian
Ocean and sub-tropical ridge variability. The CART analysis shows many interesting features
that confirm and extend our understanding of the relationships between indices of large-scale
modes of climate variability and Australian rainfall, validating the use of the tree-based
methods. The details of the trees for each region and season are shown in (Table 5.3). The
structure of the table is related to the tree structures shown in the previous section. In the table,
the first split (or primary split) is coloured green and labelled “1*”. The subsequent second left

and right splits in the trees are coloured black and labelled “L” and “R”, respectively.

Firstly, the tree-based analysis shows that teleconnections with large-scale modes of
variability are phase locked to the seasonal cycle, consistent with a linear analysis. The most
important set of predictor variables in MAM are related to ENSO, as 7 of 12 regions draw on
this mode for the primary split. The relationship between Australian rainfall and ENSO is not
strong during MAM, indeed the average correlation between regional rainfall and indices of
ENSO ranges from -0.12 (EMI) to 0.21 (SOI). While the relationship with ENSO is weak, it is
stronger than with other predictor variables as splits based on ENSO result in the largest
increase in mean node purity. The importance of the STR compared to ENSO increases during

MAM with four regions splitting first on a facet of subtropical pressure variability. In JJA, when
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the mean position of the STR is over the continent, the STR is the most important predictor
variable: it is selected for the primary split for 6 of 12 regions located in southern Australia.
ENSO dominates during SON with 9 of 12 regions splitting on an index of Pacific Ocean
variability. In DJF, as the influence on ENSO is reduced and the STR is located to the south of
Australia, no single mode of variability dominates. Indices related to ENSO and Indian Ocean
variability are each relevant to 5 of 12 regions, with the STR chosen in the two remaining

regions.

Secondly, the spatial distribution of variable importance is also consistent with known
relationships with large-scale modes of variability. Indices of ENSO variability dominate in the
northeast across all seasons. In the southeast indices of ENSO and STR variability are used to
define rainfall regimes, while in the southwest indices of Indian Ocean variability appear in
combination with ENSO or the STR. This summary has shown that spatially and temporally
CART draws on known relationships between large-scale climate modes of variability and
regional Australian rainfall. A further examination of the tree characteristics in each season

follows.
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Table 5.3. The trees classifying rainfall regimes in 12 Australian drainage divisions from a suite of 14 predictor variables, over
the period 1900 — 2009, in MAM, JJA, SON, and DJF. The first predictor variable (labelled “1*'”, coloured green,
preceding the backslash) is the primary split, with the left and right secondary splits following (labelled “L” or “R”,
black, bold). “x” indicates no further splits on that node.

8 MAM JIA SON DJF
e et § " §
o' | Division (1% first split | L: left split - R: right (1% first split | L: left split - R: right gy o (1 first split | L: left split - R:
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=}
Z

GoC 1"': SOI/ L: RegionC - x 1": RegionC / L: STRP - R: IODE 1": SOI/x - SOI 1"': N4/ Lz Nicholls - x
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o
172}
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Further examination of tree characteristics in SON (Table 5.3) reveals that the SOI is the
most important of the ENSO indices, as it is chosen for 6 of 9 regions located in northern (TiS,
GoC, NECS, NECBF) and southeastern (SEC, MDBA) Australia. This is consistent with the
understanding using linear statistics, as the SOI is the most highly correlated predictor variable
(r 2 0.49) in these regions. Additionally, in SON, regions in southern Australia require
information from the Indian Ocean or STR variability to define rainfall regimes; the primary
split in SAG, TAS and MDBW is the Nicholls SST gradient, STR-I and Region C, respectively.
The linear correlation may give an indication of the predictor variables chosen for splits, but
CART draws upon additional information. For example, in MBDW there is a stronger

correlation with SOI than with the predictor variable chosen for the primary split (Region C).

In JJA, the importance of STR variability in defining Australian rainfall regimes increases.
STR-I is selected as the primary split in 6 of 12 regions in southern Australia (SEC, MDBW,
TAS, SAG, SWC, 10). The ability of CART to extract additional information compared to the
linear regression is again highlighted in the SEC. This region has a stronger correlation with
ENSO indices than with STR-I, but low STR-I (<= -1.5 hPa) defines a wet regime with
moderate purity (78%). The influence of ENSO on the SEC is incorporated in the second split,
where Nifio 4 is used to define a high purity (91%) dry node. Southern Australia (e.g. SAG,
TAS) is known to have strong relationships with both the STR (Timbal and Drosdowsky 2013)
and Indian Ocean (Nicholls 1989) variability in JJA, which is highlighted as indices of both
climate drivers are required to define rainfall regimes in southern Australia. In both TAS and
SAG, information about STR-I and Indian Ocean variability is needed to adequately classify
rainfall regimes. The interaction between STR-I and indices of Indian Ocean variability can be

seen in the SAG tree (Figure 5.10).
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Figure 5.10. The tree classifying JJA rainfall regimes in the SAG, from a suite
of 14 predictor variables, over the period 1900 — 2009. The number
of years classified into the dry (red), average (green) and wet (blue)
regimes is marked.

The interaction between sub-tropical and tropical modes of variability can be a useful
predictor of wet and dry regimes. Figure 5.10 shows that a wet regime (88% purity) is defined
when the intensity of the STR is low (< -0.02 hPa) and warm SST anomalies are located in the
maritime continent (Region C >= 0.25°C). Conversely a strong STR (STR-I >= -0.02 hPa) and
cool SST anomalies in the maritime continent region (NWS < 0.2°C) are associated with dry
conditions (80% purity). Comparison of rainfall composites for the driest and the wettest
regimes suggest non-linearities in the rainfall response over the southeast Australia and the
coastal region (Figure 5.11). The negative rainfall anomaly in the dry regime is stronger than
the corresponding positive anomaly in the wet regime despite the fact both regimes are defined
from similar sized SST anomalies in the maritime continent, which could indicate that a
stronger rainfall response is associated with more widespread SST anomalies in the NWS
region. The positive (negative) 850 hPa geopotential height anomalies over southern Australia
in dry (wet) regime are associated with a warmer (cooler) atmosphere and higher (lower)
atmospheric pressure. Both regimes have geopotential height anomalies that extend through the

atmosphere but are confined to southern Australia in the upper atmosphere (Figure 5.11).
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Figure 5.11. Spatial distribution of composite a) rainfall, b) 850 hPa
geopotential height, ¢c) 500 hPa vertical velocity and d) 200 hPa
geopotential height anomalies in the four regimes defined when
JJA SAG rainfall is classified from a suite of 14 predictor variables,

over the period 1900 — 2009.

In DJF a wider range of predictor variables have relationships with rainfall as the

dominance of ENSO in SON recedes; this is reflected in the larger number of indices that are

selected for the first split. In northern Australia, indices of ENSO or maritime continent

variability dominate, as the first split in TiS, GoC, NECS, NCEBF are SOI, Nifio 4, NWS and

IOD-E, respectively. In southeastern Australia, indices of Indian Ocean variability dominate
(MDBW, MDBA = IOD-E, SEC = I0D-W) with only MDBSA classified from a primary split
on Nifio 3.4.

Correlations between predictor variables and regional rainfall in MAM are considerably

lower with the strongest linear relationship in GoC and NEC with the SOI (r=0.43 and 0.35,

respectively). In MAM, there is a less consistent signal from any particular mode of variability
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as various indices of ENSO are selected in 7 of 12 regions. Despite little linear correlation, the
CART method is able to produce skilful trees that predict wet and dry regimes with accuracy.
However, the issue of over-fitting should be kept in mind (Hastie et al. 2001), as tree-based
models that are fit to the stochastic variability are likely when there are limited relationships

with predictor variables.

The tree-based models presented here give an indication of the maximum skill possible
(i.e. the most homogeneous terminal nodes) with this data set and model parameters; subsequent
analysis (Section 5.4.2) using a limited number of predictor variables will have decreased node
purity. It has shown that predictor variable importance varies spatially and seasonally
consistently with previous research and using traditional linear methods (Risbey et al. 2009,
Timbal and Drosdowsky 2013). This section showed that although CART is generally
consistent with the linear analysis that there are instances when the tree-based classification
method behaves differently than the linear statistical methods, suggesting that CART extracts
information stemming from the non-linear portion of the variability. This section has validated
the use of tree-based in the classification of Australian hydroclimatic regimes, as the models are
drawing on known relationships and capturing known sources of variability without the
restriction to a linear statistical framework. From this foundation, a pairwise analysis of various
combinations of predictor variables follows that will shed further light on the interactions and
relationships between indices of large-scale climate variability that influence Australian

hydroclimate.

5.4.2 Tropical — sub-tropical interactions

Following from the validation of the CART method in Section 5.4.1, this section focuses
on several case studies to explore interactions between tropical (i.e. ENSO and the I0OD) and

sub-tropical (i.e. STR) large-scale climate drivers that influence regional rainfall regimes.

Section 5.4.1 showed that indices of ENSO were vital for the classification of rainfall
variability, particularly in the north and southeast of the continent. Generally, the SOI was
selected preferentially over Nifio 3.4, but the oceanic index is used here because of the greater
predictability and greater persistence of SST anomalies. Indian Ocean variability is represented
by the DMI, which was crucial for the classification of rainfall regimes in southern and western
Australia (Section 5.4.1). Here the STR is characterised by its intensity (STR-I) rather than the
position, because STR-I has a stronger correlation with rainfall variability in southern Australia.
The positive correlation between STR intensity and position should be kept in mind, as it

suggests that as the STR intensifies as it moves further south (Timbal and Drosdowsky 2013).
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Indices of remote and regional climate drivers are significantly correlated with each other
and with rainfall, which can make characterising influences difficult. Moreover, these strong
linear correlations can mask more subtle aspects of the relationship that may be important in
defining climate regimes. The relationship between STR intensity and rainfall in JJA is strong in
the south and east of the continent (SEC, MDBW, MDBA, MDBSA, SAG, TAS) with
correlations ranging between r = -0.37 (SEC) to r = -0.69 (MDBW), indicating that increased
STR intensity is associated with lower rainfall in southern Australia (Peixoto and Oort 1992). In
addition, STR intensity is strongly correlated with indices of Indian and Pacific Ocean

variability in this season through changes to the Hadley Circulation.

A comparison of classification trees constructed from two pairs of predictor variables, the
ENSO and IOD models, in JJA and SON is presented (Table 5.4). The analysis includes an
examination of classification trees together with composite rainfall anomalies and atmospheric
variables such as upper and lower troposphere geopotential height anomalies, mid-troposphere

vertical velocity and lower troposphere vector wind anomalies.

Table 5.4. The predictor variables used in the ENSO and IOD models to
classify regional rainfall regimes in JJA and SON.

Model Predictor variables
“ENSO model” Nifio 3.4 and STR-I
“IOD model” DMI and STR-I

The tree-based models classifying JJA rainfall regimes in 12 regions from the ENSO and
IOD models are shown in Table 5.5. These models are spatially consistent with previous
research (Nicholls 1989, Risbey et al. 2009, Timbal and Drosdowsky 2013) and the analysis
using all predictor variables (Section 5.4.1), as the STR tends to be preferentially selected in
southern Australia while Nifio 3.4 or the DMI dominate in the north. This confirms that the
ENSO and 10D models adequately capture the known sources of variability. It should be noted
that node purity will likely be lower in these models compared to those constructed from all
predictor variables (Section 5.4.1) for two reasons. Firstly, including fewer predictor variable
swill limit over-fitting in the model, and secondly, as the ENSO and IOD models are forced to
classify regimes from fewer predictor variables that may have weaker relationships with the
response variable. Diagnostics similar to the Akaike Information Criteria can be used to balance
closeness of fit with a penalty term to guard against over-fitting. This has not been implemented

here as the tree size is maintained to maximise interpretability. The value of this analysis comes
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from examining the combinations of predictor variables that define particular regimes, and

analysis of the composite rainfall and atmospheric anomalies.

The selection of the DMI as the primary split in the northern regions (TiS, GoC, NECS)
may reflect dependence of the IOD on ENSO (Meyers et al. 2007) or it may be the “better of
two bad choices” for the region; node purity is low which suggests the latter. Given the
strongly data-dependent nature of classification trees, the similarities between the ENSO and
10D models in classifying JJA rainfall regimes is striking; SEC and MDBW split only on STR-I
in both models, while SAG splits first on STR-I with additional splits from the tropical predictor

variable.

The remainder of this section will discuss case-studies to explore interactions between
large-scale modes of climate variability that are relevant for Australian hydroclimatic regimes
and highlight the value in a tree-based analysis. Case studies from four regions are discussed in
greater detail, the Murray-Darling Basin semi-arid region in JJA (MDBSA, Section 5.4.2.a), the
South Australian gulf region in JJA (SAG, Section 5.4.2.b) and the southeast coast region in
SON (SEC, Section 5.4.2.c)
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Table 5.5. The trees classifying rainfall regimes in 12 Australian drainage
divisions in JJA from the ENSO model (left) and the IOD model
(right), over the period 1900 — 2009. The first index preceding the
backslash (green) is the predictor variable chosen for the first split,
with the left and right secondary splits following (black, labelled
“L” and “R”). “x” indicates no further splits on that node.

Reg- Division N34 + STRI (JJA) DMI + STRI (JJA)
ion (1% first split | L: left split — R: right split) | (1° first split | L: left split — R: right split)
- TiS 1°: STRI/ x - R: STRI 1%: DMI/ x - R: STRI
=
o
“ GoC 1% N34/ L: N34 - x 1°: DMI/ x - x
2 NECS 1°': N34 /x - R: STRI 1°: DMI/ x - x
z NECBF 1%: N34/ L: STRI - x 1": STRI/L: DMI - R: DMI
SEC 1°: STRI/L: STRI - x 1°: STRI/L: STRI - x
2 MDBW 1°: STRI/ x - R: STRI 1°: STRI/ x - R: STRI
= .
3 MDBA 1%: STRI/ x - R: N34 1°: STRI/ x - R: STRI
MDBSA 1%': STRI/ L: N34 - R: N34 1*: DMI/ x - R: DMI
- TAS 1°: STRI/ x - R: STRI 1*: STRI/ L: DMI - R: DMI
3
« SAG 1%: STRI/L: STRI - R: N34 1*: STRI/L: DMI - R: STRI
SWC 1°: STRI/ x - R: STRI 1%: STRI/ x - R: DMI
g
10 1°: STRI/L: STRI - x 1%: STRI/L: STRI - R: DMI

5.4.2.a Murray-Darling Basin Semi-Arid (MDBSA)

This section examines the interactions between indices of large-scale modes of climate

variability that influence MDBSA rainfall in JJA. Significant correlations exist between all

predictor variables (Nifio 3.4, DMI and STR-I) and MDBSA rainfall (r =-0.28, -0.35 and -0.46,

respectively). Interestingly, the IOD model does not require information about STR-I to classify

rainfall regimes, despite a stronger correlation between STR-I and rainfall compared to the DMI

and rainfall (Figure 5.12). This tree structure is in contrast to the wetter regions of the MDB (i.e.

MDB Wet and MDB Agricultural) that define rainfall regimes solely from STR-I (Table 5.5).

The differences between these tree structures suggest that different mechanisms are associated
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with rainfall variability in different regions of the MDB. The more coastal regions (MDBW and
MDBA) have a stronger relationship with the STR, likely through changes in moist onshore
easterly winds. In contrast, rainfall in the inland MDBSA region has a stronger relationship with
Indian Ocean SST variability that brings rainfall to the region through northwest cloud bands. In
addition, the IOD model classifies years as average more than would be expected, i.e. 56 times

compared to an expected 37 years.

ENSO and the STR are also positively correlated in JJA (r = 0.22) and both indices are
required to adequately define rainfall regimes. As such, the ENSO model will be the focus for

the remainder of this section (Figure 5.12).

@
dry dry
37 37 36 37 37 36

DMI >=0.23

STRI >=0.85

DMI >=-0.26

N34 >= -0.61 N34 < 0.044 <-0.26

<-0.61 >=0.044
[6]
£)
[4] [6] 20 4 4 14 26 16 37 16
dry avg wet avg
20 5 2 051 14 11 21 3 16 12

Figure 5.12. The trees classifying JJA rainfall regimes in the MDBSA, from
the ENSO model (left) and the IOD model (right), over the period
1900 — 2009. The number of years classified into the dry (red),
average (green) and wet (blue) regimes is marked.

The ENSO model classifies four distinct rainfall regimes (Figure 5.13) with both phases of
ENSO (EI Nifio and La Nifia) and the STR-I (high and low STR-I) each with two regimes. This

tree structure allows the examination of combined tropical — sub-tropical climate drivers.
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Figure 5.13. The JJA rainfall regimes from the tree classifying JJA MDBSA,
from the ENSO model, over the period 1900 — 2009. The
combinations of high and low STR intensity and La Niia and El
Nifo conditions in each regime are shown.

The ‘dry’ and ‘wet’ regimes are defined when ENSO and the STR are in the same phase,
so that a combination of high STR-I and El Nifio conditions results in the classification of a
‘dry’ regime (Terminal Node 4) while the opposite combination (i.e. low STR-I and La Nifa
conditions) result in a ‘wet’ regime (Terminal Node 6). Rainfall and atmospheric composites in
these regimes are mirror images (Figure 5.13 and Figure 5.14). For example, in the ‘dry’ regime
the negative rainfall anomalies are spatially consistent across the continent, with vertical
motion, vector wind and geopotential height anomalies all indicating that El Nifo is well
developed in the Pacific Ocean and that southern Australia is under the influence of

anomalously high MSLP.

In contrast, the two ‘average’ regimes show the interactions between the STR-I and ENSO
that are important for southeastern Australian rainfall. For example, a comparison of the two
rainfall regimes defined during the La Nifa phase but with high or low STR-I (Terminal Nodes
5 and 6, respectively, in Figure 5.13 and Figure 5.14) shows how the STR can modulate the
teleconnection of ENSO influence over southern Australia. In the ‘average’ regime defined by
high STR-I and La Nifia conditions (Terminal Node 5: STR-I > 0.85 hPa and Nifio 3.4 < -
0.61°C) the high pressure anomaly over southern Australia confines the positive rainfall
anomalies that occur during La Nifa to north-eastern Australia. Indeed, the vector wind
anomalies in this regime suggests that the strong positive rainfall anomalies on the east coast are
likely caused by the interaction between increased trade winds associated with La Nifia

conditions and enhanced onshore flow associated with a strong STR (Figure 5.14).
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In contrast, the vector wind anomalies in the ‘average’ regime defined by EI Nifio
conditions and low STR-I suggests that increased rainfall in southern Australia is associated
with increased westerly winds while northeastern Australia is influenced by decreased trade
winds and warmer SST anomalies in the central Pacific Ocean. In this regime, the negative
rainfall anomalies generally associated with El Nifio conditions are confined to the northeast by

the lower MSLP anomalies associated with low values of the STR-I.

The following section (5.4.2.b) discusses rainfall regimes in a neighbouring region, the

South Australian Gulf (SAG).
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Figure 5.14. Spatial distribution of composite a) rainfall, b) 850 hPa
geopotential height, ¢c) 500 hPa vertical velocity and d) 200 hPa
geopotential height anomalies in the four regimes defined when
JJA MDBSA rainfall is classified from the ENSO model, over the
period 1900 — 2009.
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5.4.2.b South Australian Gulf (SAG)

The previous section showed the importance of interactions between ENSO and the STR in
defining rainfall regimes in the MDB. This section will further explore these interactions, using

a case study from the SAG, defining rainfall regimes in JJA with the ENSO and IOD models.

In JJA, when the mean position of the STR is over the continent, rainfall in southern
Australian is dominated by STR variability. This is demonstrated by the classification of two
rainfall regimes in both models from only the STR-I, consistent with the strong correlation
between the STR-I and SAG rainfall (r = -0.67). In both models, a ‘dry’ regime (Terminal Node
4) is defined when STR-I is high (STR-I > 0.68 hPa) while an ‘average’ regime (Terminal Node
5) is classified from median positive values of STR-I (STR-I between -0.022 — 0.68 hPa). 1997,
a strong El Nifio and positive 10D year, was classified into the ‘dry’ regime by both models,
based only on STR-I. The classification of regimes using only the STR highlights the linearity
of the relationship between STR-I and SAG rainfall (Figure 5.15). In these rainfall regimes the
state of the tropical oceans has little effect, as a La Nifa or negative IOD year can be dry

provided the STR-I is high (Figure 5.15).

Despite the similarities in defining the ‘dry’ and ‘average’ rainfall regimes, both models
then require information on the state of the tropical modes of variability to define the ‘wet’

regimes that are the focus of the following sections (5.4.2.b.i and 5.4.2.b.ii).

dry
| 37 37 36)
STRI >=-0.022 STRI >=-0.022
<-0.022
wet
7 17 32
STRI >=0.68 N34 >=0.33 STRI >= 0.68 DMI >=0.2

<0.68 <0.33 < 0 68

i szw (@
dry avg avg wet avg dry wet
25 10 ¢ 310 8 076 0 2 2516 1 5103 522 21530

Figure 5.15. The trees classifying JJA rainfall regimes in the SAG, from the
ENSO model (left) and the IOD model (right), over the period 1900 —
2009. The number of years classified into the dry (red), average
(green) and wet (blue) regimes is marked.
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5.4.2.b.i SAG ENSO model (JJA)

Section 5.4.2.b outlined the rainfall regimes classified from only the STR-I, common to
both models. This section discusses the rainfall regimes in SAG that were defined from both the
STR-I and Nifio 3.4. The inclusion of ENSO variability in defining SAG rainfall regimes shows
that the tree-based models are able to extract additional information compared to linear
methods, as the correlation between Nifio 3.4 and SAG rainfall is insignificant (r = -0.17 n/s).
The ENSO model defines a ‘wet’ regime (Terminal Node 7) when a weak STR-I is combined
with the neutral or negative phase of ENSO (Figure 5.15, STR-I <-0.022 and Nifio 3.4 < 0.33).
Many La Nifia years are classified into this ‘wet’ regime (Table 5.6 and Figure 5.15).
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Figure 5.16. The JJA rainfall regimes from the tree classifying JJA SAG, from
the ENSO model, over the period 1900 — 2009. The combinations of
high and low STR intensity and La Nifia and El Nifio conditions in
each regime are shown.

Positive rainfall anomalies in the ‘wet’ regime (Terminal Node 7, Figure 5.16 and Figure
5.17) are widespread and spatially homogeneous across Australia, with only the southeast coast
displaying negative anomalies (Figure 5.16 and Figure 5.17). The composite atmospheric
response in this regime indicates that La Nifia is active. The Australian region and Indo-Pacific
basin are dominated by upper and lower tropospheric circulation anomalies that indicate a
cooler and wetter atmosphere. Anomalous cyclonic circulation is located over southern
Australian bringing southerly air and stronger westerly winds over the continent (Figure 5.16

and Figure 5.17).

Kirien Whan Chapter 5: interactions between tropical and sub-tropical climate modes of climate variability



134

Table 5.6. The years classified into the average (Terminal Node 6) and wet
(Terminal Node 7) rainfall regimes in SAG from the ENSO model,
over the period 1900 — 2009. Red (blue) indicates the positive
(negative) phase of ENSO.

Model Node Years

Average regime 1900, 1904, 1920, 1926, 1930, 1931, 1958, 1963, 1972,
(Terminal Node 6) 1991, 1992, 2004

1901, 1903, 1907, 1909, 1910, 1915, 1916, 1917, 1922,
Wet regime 1923, 1927, 1929, 1932, 1935, 1939, 1942, 1943, 1946,
(Terminal Node 7) 1951, 1952, 1953, 1955, 1956, 1961, 1964, 1968, 1970,
1971, 1973, 1974, 1975, 1978, 1981, 1984, 1985, 1986,

1989, 1990, 1996, 2000, 2001, 2003, 2007", 2009*

ENSO model

12007 is not classified in Ummenhofer et al (2011), but is considered a La Nifia and positive IOD year by
BoM (2013).
22009 is not classified in Ummenhofer et al (2011), but is considered an El Nifio by BoM (2013).
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Figure 5.17. Spatial distribution of composite a) rainfall, b) 850 hPa
geopotential height, ¢c) 500 hPa vertical velocity and d) 200 hPa
geopotential height anomalies in the four regimes defined when
JJA SAG rainfall is classified from the ENSO model, over the
period 1900 — 2009.

An ‘average’ rainfall regime (Terminal Node 6, Figure 5.17) is defined when a weak STR

is combined with the positive phase of ENSO (STR-I < -0.022 hPa and Nifio 3.4 > 0.33°C),

resulting in regions of positive (negative) rainfall anomalies in southern (northeastern)

Australia. This spatial signature is reflected in the atmospheric circulation composites as a

cooler atmosphere is found over southern Australia in the lower and upper atmosphere. In

addition, the vector wind anomalies over southern Australia are reminiscent of those found in

the ‘wet’ regime, while the vertical velocity anomalies in the central equatorial Pacific indicate

an El Nifio-like state (Figure 5.17). Many of the years in this regime are considered to be neutral
ENSO years but three El Nifio years (1930, 1963, 1972) have SAG rainfall in the middle or
upper tercile (Table 5.6). In 1930, 1963, and 1972 the anomalous JJA values for Nifio 3.4 (STR-
I) were 0.46, 0.46 and 0.79°C (-0.41, -1.85, -0.19 hPa), respectively; these values are consistent

with the positive linear relationship between the predictor variables. Rainfall anomalies (Figure
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5.18) for these individual years are more spatially heterogeneous than the rainfall regime
composites as they lack smoothing that stems from averaging years. In 1972, average or
positive rainfall anomalies in southern Australia (SAG region and Tasmania) are combined with
widespread negative rainfall anomalies over eastern Australia that reflects the strong SST
anomalies in the eastern Pacific Ocean (Nifio 3.4 = 0.79°C) and moderate STR-I (STR-I = -
0.19 hPa). The Pacific Ocean is in a similar state in 1930 and 1963 (Nifio 3.4 = 0.46°C) but
STR-I is much lower in 1963 (STR-I = -1.85 hPa). This is reflected in the spatial distribution of
rainfall with more positive rainfall anomalies over southern Australia in 1963 compared to

1930.

The comparison of these three years supports the analysis of the regimes, which showed
how interactions between tropical and sub-tropical climate drivers control the spatial
distribution of the rainfall anomalies. ENSO and STR-I are positively correlated but the STR
has relationships with other large-scale climate drivers. The impact of ENSO cannot be felt in
southern Australia if the signal cannot be teleconnected to the region through changes to the
STR. If increased SST anomalies in Nifio 3.4 are not combined with a more intense STR, then
the teleconnection can break down and rainfall anomalies do not decline as expected during an
El Nifio event. STR position likely plays an additional role but it is not explored in this chapter.
The following section examines the interactions between Indian Ocean and STR variability the

influence SAG rainfall in JJA.

1930 1963 1972

Nifio 3.4 = 0.46 °C Nifio 3.4 = 0.46 °C Nifio 3.4 = 0.79 °C
STR-I =-0.41 hPa STR-I =-1.85 hPa STR-I =-0.19 hPa
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Figure 5.18. JJA rainfall anomalies for three El Nifio years (1930, 1963 and
1972 - left to right) classified into the average rainfall regimes from
the ENSO model, with the seasonally averaged Nifio 3.4 and STR-I
values indicated for each year.

5.4.2.b.ii SAG 10D model (JJA)

Similarly to the ENSO model, the IOD model only requires input from the tropical climate
driver to classify rainfall regimes when STR-I is low (Figure 5.16 and Figure 5.19). The
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inclusion of the DMI in the classification tree is consistent with the significant correlation

between the DMI and rainfall in the SAG (r = -0.39).

When the STR-I is low, the phase of the DMI is essential for controlling the sign of the
rainfall anomaly over southern Australia, as the IOD model classifies a ‘wet and a ‘dry’ regime,
depending on the state of the Indian Ocean (Figure 5.19 and Figure 5.20). This is in contrast to
the ENSO model, that defined ‘wet’ and ‘average’ rainfall regimes when STR-I was low,
depending on ENSO phase, (Figure 5.15). Weak STR-I in combination with the positive phase
of the IOD (STR-I < -0.022 hPa and DMI > 0.2°C) defines the ‘dry’ regime (Terminal Node 6,
Figure 5.15 and Figure 5.19). The definition of a ‘dry’ regime in southern Australia in the IOD
model compared to an ‘average’ regime in the ENSO model suggests that Indian Ocean
variability has a stronger influence over southern Australian rainfall than ENSO, which is

consistent with our current understanding of the linear relationships (Risbey et al. 2009).
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Figure 5.19. The JJA rainfall regimes from the tree classifying JJA SAG, from
the IOD model, over the period 1900 — 2009. The combinations of
high and low STR intensity and the negative and positive IOD
phases in each regime are shown.

The positive rainfall anomalies in this ‘dry’ regime (Terminal Node 6) are confined to
southwest Western Australia, southwest eastern Australia, Tasmania and northern Australia,
while negative anomalies occur in the central third of the continent (Figure 5.19 and Figure
5.20). This is in contrast to the ‘dry’ regime classified solely from high STR-I (Terminal Node

4) that has a very different rainfall and atmospheric signature. The positive rainfall anomalies in
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southern Australia are likely associated with the weak STR-I, evidenced by the strengthened
westerly winds and negative geopotential height anomalies across southern Australia (Figure
5.20). The influence of the IOD on the central third of Australia is seen in the anomalous
subsiding air stretching from the eastern Indian Ocean across Australia to the mid-east coast.
The positive phase of the IOD results in negative rainfall anomalies in southern Australia even
when MSLP is low (i.e. STR-I is weak), which suggests that the IOD influences rainfall via
other processes such as changing moisture transport, rather than through circulation changes.
This shows that the phase of the IOD is more effective in modulating the impacts of a weak
STR on rainfall in southern Australia, compared to teleconnections from the Pacific Ocean (i.e.

ENSO).

Table 5.7. The years classified into the dry (Terminal Node 6) and wet
(Terminal Node 7) rainfall regimes in SAG from the IOD model, over
the period 1900 — 2009. Red (blue) indicates the positive (negative)

phase of 10D.
Model Node Years
Dry regime 1923, 1926, 1935, 1946, 1961, 1963, 1972, 1975,

(Terminal Node 6) 2007

1900, 1901, 1903, 1904, 1907, 1909, 1910, 1915,
1916, 1917, 1920, 1922, 1927, 1929, 1930, 1931, 1932,
Wet regime 1939, 1942, 1943, 1951, 1952, 1953, 1955, 1956, 1958,
(Terminal Node 7) 1964, 1968, 1970, 1971, 1973, 1974, 1978, 1981, 1984,
1985, 1986, 1989, 1990, 1991, 1992, 1996, 2000, 2001,

2003, 2004, 2009>

10D model

12007 is not classified in Ummenhofer et al (2011), but is considered a La Nifia and positive IOD year
by BoM (2013).

2 2009 is not classified in Ummenhofer et al (2011), but is considered an El Nifio by BoM (2013).

In addition, this analysis highlights the importance of phase locking between tropical and
regional modes of variability in defining widespread rainfall anomalies. For example, weak
STR-I combined with the neutral or negative phase of the IOD (STR-I <-0.022 hPa and DMI <
0.2°C) defines a ‘wet’ regime. This regime has spatially homogeneous positive rainfall

anomalies across eastern Australia (Figure 5.19 and Figure 5.20).

This section (Section 5.4.2.b) has compared the ENSO and 10D models classifying JJA
rainfall in the SAG to explore interactions between remote Indian and Pacific Ocean modes of

variability with the intensity of the STR.
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Figure 5.20. Spatial distribution of composite a) rainfall, b) 850 hPa
geopotential height, ¢c) 500 hPa vertical velocity and d) 200 hPa
geopotential height anomalies in the four regimes defined when
JJA SAG rainfall is classified from the IOD model, over the period
1900 — 2009.

5.4.2.c Southeast Coast ENSO model (SON)

This section discusses the combined influence of STR-I and Pacific Ocean variability on
SON rainfall regimes in the southeast coast (SEC) region. Consistent with the correlation
analysis, the classification tree suggests there is a stronger relationship between ENSO
variability and rainfall, compared to STR-I and rainfall, as Nifio 3.4 is selected for the first split
(Figure 5.21). Only 18 years are classified into the ‘average’ regime than the expected 37. This
lowers confidence in the model and suggests too many years are being classified into the ‘dry’

regime.
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Figure 5.21. The tree classifying SON rainfall regimes in the SEC, from the
ENSO model, over the period 1900 — 2009. The number of years
classified into the dry (red), average (green) and wet (blue) regimes
is marked.

A ‘wet’ regime is defined by the La Nifia phase of ENSO (Nifio 3.4 < -0.41), which is
associated with positive rainfall anomalies across the eastern third of the continent (Terminal
Node 3, Figure 5.22 and Figure 5.23). The intensity of the STR is not required to classify the
wet regime. The impact of the STR-I is only required when SST anomalies in the Pacific Ocean
are warm (Nifio 3.4 > -0.41). A ‘dry’ regime (Terminal Node 4, Figure 5.22 and Figure 5.23)
with negative rainfall anomalies over eastern Australia is defined when both ENSO and the
STR-I are in the dry phases (i.e. Nifo 3.4 > -0.41 and STR-I > -0.64). The negative rainfall
anomalies in the dry regime are associated with a warmer troposphere and vertical velocity
anomalies that are generally associated with El Nifio, i.e. negative (positive) anomalies
indicating rising (subsiding) air over the equatorial Pacific (maritime continent) and anti-
cyclonic wind anomalies over southern Australia. This is evident despite the classification of

some neutral ENSO and average STR-I years into the regime (Figure 5.22 and Figure 5.23).
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Figure 5.22. The SON rainfall regimes from the tree classifying SON SEC,
from the ENSO model, over the period 1900 — 2009. The
combinations of high and low STR intensity and the negative and
positive ENSO phases in each regime are shown.

An ‘average’ rainfall regime (Terminal Node 5, Figure 5.22 and Figure 5.23) is defined
when the dry phase of ENSO is combined with a weak STR (i.e. Nifio 3.4 >-0.41 and STR-I < -
0.64). Spatially, this regime is characterised by negative rainfall anomalies in northeastern
Australia and positive anomalies in the southeast, dividing the SEC region and likely causing
the classification as an ‘average’ rainfall regime. The vertical velocity anomalies in this regime
suggest that the Pacific Ocean is characterised by El Nifio-like variability. However, the
teleconnection from the tropical Pacific Ocean does not reach southern Australia as a cooler
lower troposphere and vector wind anomalies that are associated with a weak STR dominate in
the south (Figure 5.23). The Pacific-South American pattern can be seen in the upper
troposphere geopotential height anomalies in the ‘wet’ and ‘dry’ regimes is evident but less
developed in the average regime, consistent with the state of the Pacific Ocean. In the dry and
wet regimes the warm and cool upper tropospheric anomalies stretch across the Pacific and
Indian Oceans, while in the average regime the warm anomalies are confined to the Pacific
Ocean. This suggests a possible role for the Indian Ocean, through the relationship with the

STR.
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Figure 5.23. Spatial distribution of composite a) rainfall, b) 850 hPa
geopotential height, c) 500 hPa vertical velocity and d) 200 hPa
geopotential height anomalies in the four regimes defined when
SON SEC rainfall is classified from the ENSO model, over the
period 1900 — 2009.

5.5 Discussion and conclusions

This chapter was broadly structured in two parts. The first part (Section 5.3.2) played a
structural role in the thesis, introducing the methodology and outlining the ways tree-based

models are used throughout the thesis. Several key features of CART were introduced,
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including concepts related to tree structure (type of tree, size of tree and predictor variables),
node purity and the composite analysis. Following from this example based general
introduction, Section 5.4.1 presented tree-based models that classified rainfall regimes in 12
regions in each of the traditional four seasons from all predictor variables. The section showed
that the seasonal and spatial variability in the predictor variables selected to define rainfall
regimes in the tree-based analysis is consistent with previous research. This served several
purposes. Firstly, the use of the tree-based method is validated, as the results are broadly similar
to those obtained from a classical statistical framework. Secondly, it adds confidence to the use
of linear methods by showing that such methods that are limited to capturing the linear portion
of the variability can adequately describe most rainfall regimes. Finally, the maximum node
purity that can be achieved with this set of predictor variables was presented to give context to
the subsequent analysis where the number of predictor variables is limited. The inclusion of all
predictor variables allowed the tree-based models to search many more possible split points to

divide the response variable to results in the largest node purity.

The second part of this chapter (Section 5.4.2) presented a pairwise comparison of rainfall
regimes defined from a subset of predictor variables (Nifio 3.4, DMI, STR-I). This section
showed how tree-based models can provide additional insights about interactions between
climate drivers that are important for Australian rainfall regimes. The tree-based models can
give increased knowledge about interactions between the regional and remote modes of
variability associated with Australian climate regimes. For example, the MDBSA case study
suggested that different mechanisms were associated with rainfall in the coastal and more inland
parts of the basin (MDBW, MDBA), which is consistent with rainfall associated with moist
onshore easterly winds (Rakich et al. 2008). This section has again validated the use of the
novel method and shown the value that tree-based models can bring to an analysis of discrete

events such as rainfall.

The models predicting rainfall regimes from interactions between the STR and either
ENSO or the IOD (the ENSO and IOD models) captured the major sources of variability,
consistent with trees using all predictor variables (Section 5.4.1) and with previous research
(McBride and Nicholls 1983, Nicholls 1989, Risbey et al. 2009). The STR dominates over the
tropical modes of climate variability (i.e. ENSO and the 10D) in southern Australia, as it is
chosen for the primary split in many regions. This is consistent with the correlation analysis and
physically expected due to the close relationship between MSLP and rainfall. The tree-based
models are best able to extract additional information in regions where multiple predictor

variables have strong relationships and one predictor variable isn’t dominant.
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The interrelated nature of the climate system and the strong correlations between remote
and regional modes of climate variability can mask more subtle, but important, relationships.
The different spatial patterns of rainfall anomalies in regimes with similar ENSO phase and
differing STR-I shows how the tropical teleconnections can be modulated by other drivers. For
example, in the MDBSA, rainfall anomalies are positive and widespread across Australia when
La Nifia is combined with low STR-I. Phase locking of tropical modes and sub-tropical drivers
consistently resulted in the strongest and most widespread rainfall anomalies that affected
southern and northern Australia. Conversely, positive rainfall anomalies are confined to the
northeast while southern Australia experiences rainfall deficits when La Nifia is combined with
high STR-I. The confinement of ENSO impacts to the northeast was also found in the SAG
ENSO model. The inclusion of ENSO variability in defining SAG rainfall regimes at all is
interesting, given the insignificant correlation between the variables. This shows that the tree-
based models are able to add more nuanced information about interactions between tropical and

sub-tropical climate drivers.

The SAG and MDBSA ENSO models confined negative rainfall anomalies to northeast
Australia when El Nifio was combined with low STR-I. This pattern is spatially consistent with
the partial correlation between ENSO and Australian rainfall once the influence of the IOD is
removed (Risbey et al. 2009). This suggests that the low STR-I effectively removes the
influence of the IOD, and shows that the STR is a mechanism for the interaction between the

IOD and ENSO.

The 10D model classifying SAG rainfall highlighted the importance of interactions
between the IOD and the STR for rainfall regimes in southern Australia. When the STR-I is
weak the IOD is able to modulate the impact of low MSLP. Low STR-I is generally associated
with stronger mean westerly winds and positive rainfall anomalies in southern Australia. When
STR-I is low and the IOD is in the positive phase the region of positive rainfall anomalies is
confined to the most southern parts of continental Australia while negative rainfall anomalies
associated with the positive phase of the IOD are found over much of the continent. It is not
suggested that the IOD and STR independently influence southern Australian rainfall, as the
variables are positively correlated and the STR is associated with the ‘East Indian Ocean’ wave

train that teleconnects the IOD influence to southern Australia (Cai et al. 2011b).

Various mechanisms have been put forward to explain variability between El Nifio events,
including decadal variability (Power et al. 1999), shifts in the Walker Circulation (Wang and
Hendon 2007) and internal atmospheric variability (Kumar and Hoerling 1997). This analysis
suggests that STR variability plays a significant role. The intensity of the STR modulates the
spatial extent of ENSO impacts on Australia, so that when STR-I is low (high) the impacts of an
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El Nifo (La Nifia) event are confined to northeastern Australia. Multiple large-scale modes of
climate variability affect the STR, including ENSO through the strength of the Hadley
Circulation, the 10D through the East Indian Ocean wave train and the Southern Annual Mode
through zonal pressure changes. The positive linear relationship between both tropical indices
and the STR suggests that the positive phases of the tropical oceans tend to be associated with
increased STR-I. Yet the relationship is not perfect and the strength of the teleconnection is not
uniform between years, likely due to interactions between large-scale modes of climate
variability. This suggests that the strength of the teleconnection is as important as the state of
the tropical oceans in defining the spatial characteristics of rainfall regimes. This highlights the
importance of tropical — sub-tropical interactions for rainfall variability in Australia. The tree-
based method is able to give additional insight about differences between ENSO and 10D
events (e.g. “inter-El Nifio” variability), as the interaction with the STR is critical. The impacts
of ENSO or 10D events are not felt in southern Australia if the teleconnection is weak and the

influence of the modes is not transmitted to changes in the STR.

This analysis showed that CART can identify optimal ways of ‘binning’ response variable
data into smaller groups that may initially be non-obvious. It is common for ENSO-IOD
interactions to be discussed by separating years into each of the nine ENSO and IOD phases, i.c.
positive, negative, neutral ENSO and IOD, and their combinations (Ummenhofer et al. 2011).
Such classifications are often based on SST anomalies, alone or in combination with
atmospheric and oceanic indicators (Meyers et al. 2007, Ummenhofer et al. 2011). Regardless
of the method, such classifications of ENSO and IOD years are somewhat arbitrary and may not
be useful in the future when the characteristics of tropical variability may change. As such,

CART provides an objective way to separate years into homogeneous nodes.

The importance of facets of STR variability (intensity and position) for southern Australia

will be further explored in the following chapter (Chapter 6).
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6.1 Chapter summary and context

The previous chapter served as an introduction to the tree-based methods and demonstrated
how they are used in this thesis (Chapter 5). In Chapter 5, the focus was on interactions between
tropical and sub-tropical modes of variability that have known relationships with Australian
climate variability (Risbey et al. 2009, Timbal and Drosdowsky 2013, Timbal and Hendon
2011). Several case studies were selected to emphasise the validation of this novel statistical
method, and showed how added insight can be gained from this type of analysis compared to
that within a classical statistical framework. It was shown that variability between the impacts
of various ENSO (or IOD) events could be explained, in part, by the varying strength of the

STR intensity and the modulating role it can on tropical teleconnections.

Following on from that work, this chapter looks at interactions between facets of the STR
(i.e. intensity and position) in greater detail. The importance of STR intensity for southern
Australian rainfall was highlighted in Chapter 5, and so the focus in this chapter is on south-

west eastern Australia; a region where STR intensity explains a large portion of the variability

This chapter answers the question “Can a CART analysis of the impact of sub-tropical
ridge intensity and position on rainfall provide additional understanding of the relationship
between the STR and precipitation in SEA?” We show that indeed a tree-based analysis is able
to add insight as to the nature of the interactions between STR intensity and position that are
important in defining southeast Australian rainfall regimes. The intensity and position of the
sub-tropical ridge (STR) have strong relationships with rainfall variability in southern Australia.
The combined effect of intensity and position in March-April-May (MAM) and June-July-
August (JJA) is the focus of this research. Linear statistics were used first: area-averaged and
Australia-wide spatial correlations of STR intensity and position with precipitation in south-
west eastern Australia reveal that STR intensity has a much stronger and more widespread
relationship with precipitation in both seasons. Over time, these relationships vary in magnitude
and spatial extent with the sign of the correlation changing between two 50-year epochs. These
nonlinearities were investigated further using classification trees. Area-averaged precipitation
data (terciles) for southwest eastern Australia was classified on the basis of STR intensity and
position. In both seasons the classification trees identify STR intensity as the primary partition
defining the dry group, supporting the linear analysis. In the transition season of MAM, the time
of year when the mean position of the STR is more southerly, STR position is important in
distinguishing between a ‘winter-like’ and a ‘summer-like’ wet groups, providing STR intensity
is low. Vector wind analyses were computed to explain the composite seasonal precipitation

anomaly results in terms of different circulation patterns associated with these two wet groups.
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The frequency of wet and dry cases in each group was examined with changes evident over the
recent years. The research confirms that STR intensity is more important than STR position in
explaining inter-annual rainfall variability across southern Australia but also demonstrates the
additional role of STR position in MAM. These results explain the low correlation between
rainfall and STR position and why this relationship has evolved during the 20th century as the
mean location of the STR has shifted south in MAM. This shows tree-based methods can add

additional insight compared to a linear analysis.

The remainder of this chapter is extracted (with some alterations from the original text to
correct typographic errors and make referencing consistent) from the publication Whan et al.

(2013) from the International Journal of Climatology (Whan et al. 2013).
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6.2 Introduction

Since 1997 south-eastern Australia has experienced record low rainfall, exacerbated by
record high temperatures (Murphy and Timbal 2008). Several large-scale modes of climate
variability have relationships with south-east Australian climate and may therefore have
contributed to the recent rainfall deficit, including tropical modes of variability; such as El
Nifio-Southern Oscillation (ENSO) (Nicholls et al. 1997, Suppiah and Hennessy 1998,
Trenberth 1997) and the Indian Ocean (Saji et al. 1999, Simmonds and Rocha 1991,
Ummenhofer et al. 2011); high-latitude modes such as the SAM (Marshall 2003, Meneghini et
al. 2007) and regional mean sea level pressure indices such as the sub-tropical ridge (STR)
(Drosdowsky 2005, Larsen and Nicholls 2009, Timbal and Drosdowsky 2013, Williams and
Stone 2009). The spatial and temporal signature of the recent rainfall deficit makes the STR
particularly relevant for two reasons. Firstly, the majority of the deficit is evident in MAM
(March-April-May) when the tropical modes have little influence (Timbal 2009) and secondly,
the spatial extent of the deficit matches well with the area under the influence of the STR

(Timbal and Drosdowsky 2013).

The STR is the downward branch of the Hadley Cell; a band of high-pressure that circles
the globe at approximately 30° latitude in both hemispheres. The subsiding air associated with
this band of high pressure is responsible for arid regions on several continents, including
Australia (Peixoto and Oort 1992). Increasing global temperature is associated with changes to
the general circulation of the atmosphere including changes to the Hadley Cell. Generally the
Hadley Cell has been broadening, leading to a poleward expansion of the subtropical dry zone
(Seidel et al. 2007, Zhou et al. 2011). However, there is little scientific consensus about changes
to the Hadley Cell, as disagreement exists between reanalysis products and global climate
models. A study using precipitation observations supports the results from reanalysis products
and points to a poleward shift in the sub-tropical dry zone (Zhou et al. 2011). In addition,
regional variability exists in these trends; in particular, the sub-tropical dry zones associated
with the downward branch of the Hadley Cell have expanded in regions under the influence of
the Asian monsoon. Hemispheric differences are also evident as larger significant trends are
found in the Northern Hemisphere, while the Southern Hemisphere displays insignificant trends
towards Hadley Cell expansion (Zhou et al. 2011). Changes in the Hadley Cell are associated
with changes to the STR; it is therefore imperative that we understand how changes in the

characteristics of the STR may affect the hydrometeorology of southeast Australia.
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The STR is calculated over eastern Australia (Drosdowsky 2005, Timbal and Drosdowsky
2013) and is closely linked to precipitation variability in south-east Australia (Timbal and
Drosdowsky 2013). The seasonal cycle of the STR (Figure 6.1) shows that ridge position is
furthest south in late summer (39.6°S in February) and furthest north in late winter (29.1- S in
August). Climatologically, STR intensity is highest from April to September, reaching a peak of
1022.5hPa in June. Summer experiences the weakest STR intensity with a minimum of
1013.3hPa reached in December. The STR moves north during MAM, with the largest
northward shift from March to April as it moves an average of almost 3° over the month. The
STR is north of southeast Australia in June-July-August (JJA) and September-October-
November (SON) and south of southeast Australia in December-January-February (DJF) and
MAM. Thus, the STR is more intense and at lower latitudes during JJA compared with that in
MAM. Some differences are evident between the seasonal cycle presented here and that used in

other research because different periods are used (Cai et al. 2011a, Drosdowsky 2005).
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Figure 6.1. The monthly averages showing the annual cycle of mean STR
position and intensity. Black — months averaged from 1900 — 2009,
blue — months averaged from 1950 -1979, red — months averaged
from 1980-2009.

The seasonal north—south movement of the STR plays an important role in determining the
climate of southern Australia through changes to the mid-latitude storm track (Murphy and
Timbal 2008). When the STR is at higher latitudes in DJF, westerly winds, with embedded
frontal activity, are pushed southwards missing continental Australia, while tropical influences
may bring precipitation to the region. When the STR is at lower latitudes in JJA, cold fronts are
able to pass over southeastern Australia bringing rain to the region. As southeastern Australia
receives the majority of its precipitation in JJA, the importance of the meridional movement of

the STR is obvious, and research has shown that up to 60% of inter-annual variability in JJA
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rainfall is related to movement of the STR (Williams and Stone, 2009). The intensity of the STR
is also related to rainfall, as increasing pressure is associated with decreasing rainfall in the sub-
tropics (Ansell et al. 2000). This study will expand our understanding of how inter-annual

variability in STR intensity and position combine to affect rainfall.

Historically, research has focused on how the variability in STR position influences
climate, particularly in the east of Australia (Drosdowsky 2005, Pittock 1973, Williams and
Stone 2009). Research into the recent rainfall deficit shows that a majority (62%) of the deficit
can be linked to the intensity of the STR (Timbal and Drosdowsky 2013); using simple linear
statistics, Timbal and Drosdowsky (2013) were unable to find an effect of STR position on
rainfall in addition to the effect of STR intensity. They noted that overall the relationships
between the two aspects of the STR are fairly stable over time (as are the relationships between
the two facets of the STR and rainfall, in particular for the STR intensity and rainfall
relationship). However, other researchers have found changes in the relationship over time (Cai
et al. 2011a, Drosdowsky 2005). Cai et al. (2011a) showed that the STR intensity and position
relationship has weakened during the last 30 years, particularly in MAM. Increasing
understanding on whether the MAM relationship between STR intensity and position is
changing, and if so increasing understanding about the nature of that change, is part of the
motivation for this paper. An additional motivation is to understand why STR position does not
have an effect on rainfall in addition to that of intensity, despite the fact that STR position on its
own can be linked to a small amount of the rainfall deficit. The lack of an additional effect
attributable to the STR position is even more puzzling when considering that the delay in the
northward shift of the STR in the MAM, evident since 1975, is the largest shift, and it is the
season when most of the rainfall deficit has been observed record (Drosdowsky 2005, Timbal

and Drosdowsky 2013).

Globally, as many climatological parameters display a significant climate shift from the
mid-1970s (Trenberth 1990) it is interesting to also see this shift in the STR record. Figure 6.1
shows the shift in STR intensity and position, calculated from gridded monthly mean-sea level
pressure data, from the early (1950-1979) to the later (1980-2009) part of the record, with the
largest changes found in the transition seasons (MAM, SON). In the latter period the STR is
more intense and further south in April, May, June and November, while STR intensity is

greater in July and August, compared to the earlier period.

Many authors have raised concerns about the use of linear statistics to describe climate
processes that are intrinsically nonlinear (Campbell et al. 2000, Firth et al. 2005, Zorita et al.
1995). Linear statistics are a useful tool to help us understand the climate system but are one

tool of many that researchers should employ and have a limited ability to deal with the
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complexity of the climate system. Nonlinear techniques should be used in conjunction with
traditional methods to help us fully understand relationships and interactions between complex
variables, such as precipitation, that have multiple nonlinear associations with highly correlated
predictor variables. Classification and regression trees (CART) are one nonlinear strategy that
appears to be appropriate for the problem described. CART is able to provide insight into the
physical mechanisms underlying statistical relationships with easily interpretable results and is
shown to have the greatest advantage over linear techniques when applied to data that is

nonlinear (Rodionov et al. 2001).

The importance of the STR for southern Australian rainfall is clear. Changes in STR
intensity have a verified effect on precipitation (Ansell et al. 2000, Larsen and Nicholls 2009,
Murphy and Timbal 2008, Timbal and Drosdowsky 2013), yet the role of the position is less
well understood. This study will explore what effect inter-annual variability in STR position
has, on southeast Australian rainfall (in addition to that of intensity), using both linear and
nonlinear statistical techniques. The next section will describe the datasets and methods used,
including an introduction to the CART method. The following sections will present the results
from both the linear and CART analyses. Then, composites of precipitation and vector wind are
used to describe the atmospheric circulation associated with particular phases of the STR, based
on results of the CART analysis. Finally, results are discussed further and conclusions are

drawn on how STR intensity and position are associated with precipitation in Australia.

6.3 Data and Methods
6.3.1 Data sets

This study relies on Australia-wide precipitation data sourced from the Australian Water
Availability (AWAP) dataset (Jones et al. 2009) from 1900 to 2009. The AWAP dataset
interpolates station data and is available on a 0.05° grid for the Australian continent. A
precipitation time series for southwest eastern Australia (SEA) was calculated by seasonally
averaging values within the hatched region in Figure 6.2. This region is the area where the STR
influence is the greatest as STR intensity explains over 20% of the rainfall variability. SEA
approximately covers the area to the south-west of a line running from Melbourne to the south
of the Flinders ranges and following the end of the Great Dividing Range (GDR) over western
Victoria (see (Timbal et al. 2010) for detail about the construction of the SEA time series). The
110-year SEA precipitation time series was divided into three groups, with 37 cases in the dry

and average groups and 36 cases in the wet group.
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Figure 6.2. Map of southeast Australia. The hatched area defines the
southwest of eastern Australia (SEA) that is area-averaged and
used in this study. Colour shading indicates topography, with the
highest peaks in yellow.

The STR intensity and position indices are calculated as per the station-based ‘L-index’ in
Drosdowsky (2005). The indices are based on monthly mean-sea level pressure station data
between 10 and 44°S along the eastern Australian coast. The station data is interpolated to 1°
grid and averaged within a 5° longitude band around 150°E. The location of the maximum in
pressure within that band gives the position of the STR (with 1° accuracy), as well as the
intensity of that maximum. This index is simple to calculate, robust and consistent over time
(Drosdowsky 2005). The use of station data means that the index can be calculated as far back
as 1890; however, in this study we used data from 1900 to 2009 to match the available gridded
precipitation data. ENSO years are obtained from the Bureau of Meteorology list of 25 ENSO
years (Table 6.1) that have occurred since 1900 (Australian Bureau of Meteorology 2010).

Table 6.1. ENSO years (from Bureau of Meteorology, 2010).

ENSO years

19021903, 1905-1906, 1911-1912, 19131914, 19141915,
1919-1920, 1925-1926, 19401941, 19411942, 19461947,
19511952, 1957-1958, 19631964, 1965-1966, 1972-1973,
19771978, 19821983, 19871988, 19911992, 19931994,
19941995, 19971998, 2002-2003, 2006-2007, 2009-2010

6.3.2 Methods

The first analysis is a linear examination of SEA precipitation and the two facets of the
STR. Correlations (significant at the 5 percent level with a two-tailed Student’s t-test) were
conducted between the SEA area-averaged time series and indices of STR intensity and
position, followed by spatial correlation analysis between continental gridded Australian rainfall

(0.05°) with both facets of the STR. Statistical significance is defined throughout this research
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at the 5 percent level, which based on 110-years of data means correlations that exceed 0.2 are
significant (and are thus coloured in Figure 6.4 and Figure 6.5). A decrease in the degrees of
freedom stemming from persistence in Australian rainfall (Simmonds and Hope 1997) has not

been included in the significance testing.

To explore the non-stationarity of the relationship between the STR and rainfall, and their
spatial features, spatial correlation maps were produced for two 50-year epochs (Epoch 1: 1900—
1949 and Epoch 2: 1960-2009) to contrast how these relationships have evolved during the 20th
century but using long enough periods to ensure results are statistically significant. The same
significance level is also used in the epoch analysis, despite the smaller sample size (which
would mean that correlations significant at the 5 percent level exceed 0.28, rather than the 0.20
shown here). A common significance level is used here for both phases of the analysis because
the purpose is to show changes in the relationships over time; hence to emphasize these
temporal changes, the significance level is kept constant throughout the whole research. As per
the previous discussion, some autocorrelation may exist in the JJA series so there may be some
reduction in their significance. However, the focus is on MAM and the relative changes in the

epochs.

Previous research has shown the stability of STR-rainfall relationships in SEA over the
instrumental record (Timbal and Drosdowsky 2013), which gives confidence in the correlations
shown in this region, although the same confidence cannot be given for those correlations

outside the region (e.g. Queensland).

Next is the CART analysis, which uses area-averaged SEA rainfall time series as a
categorical response variable (the three groups are dry, average and wet), with STR position and
intensity as predictor variables. The cases that comprise each terminal node are used in a
composite anomaly analysis of the AWAP precipitation data with anomalies calculated against
the full record. The 20 most recent cases in each terminal node that occur after 1948 are also
used in a composite anomaly of vector wind using the NCEP/NCAR Reanalysis product

(Kalnay et al. 1996).

CART is a binary recursive partitioning technique first developed in the 1980s (Breiman et
al. 1984). CART has been employed in many fields including ecology and genetics (De'ath and
Fabricius 2000, Esther et al. 2010, Thuiller et al. 2003), with some applications in climatology
(Burrows et al. 1995, Firth et al. 2005, Rodionov et al. 2001, Rodionov et al. 2005). Decision
trees are constructed that seek to describe the variability of one response variable by several
predictor variables (De'ath and Fabricius 2000). They are particularly useful when there are
multiple correlated predictor variables, such as is the case with STR intensity and position in

both MAM and JJA (r = 0.49 and 0.70, respectively). Trees may be constructed using either
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continuous (regression trees) or categorical (classification trees) response data; in this research
classification trees are used (illustrative example in Figure 6.3). In the example, a response
variable (n = 30) containing three classes (A, B and C) is classified on the basis of two
predictor variables (1 and 2). This can be compared to the current research in which the
response variable used is SEA precipitation (n = 110), which is divided into terciles (dry,
average and wet groups), and classified on the basis of two predictor variables (STR intensity
and position). The first parent node (Node 1), in the example, contains 30 cases of the three
classes of response variable each with ten members. The daughter node to the left is named by
doubling the parent node (i.e. Node 2), while the right-hand daughter node is named by
doubling the parent node and adding one (i.e. Node 3). Splits are selected on the basis of
predictor variables and continue until a terminal node (a node that has no further splits). This is
can be seen in the example where the original parent node is ‘Node 1’ which is split into two
daughter nodes (Terminal Nodes 2 and 3) on the basis of ‘Predictor variable 1°. When the
splitting criterion is met (i.e. ‘Predictor variable 1’ is > x) the cases of the response variable are
put into the left node. If the criterion is not met (i.e. ‘Predictor variable 1’ is < x) the cases are

put into the right node.

Predictor variable 1 > x

NODE 1

10/10/10

TERMINAL
NODE 2

71411

NODE 3

Predictor variable 2 < y

TERMINAL TERMINAL
NODE 6 NODE 7
3/5/4 0/1/5

Figure 6.3. Classification tree example. Predictand data = three groups each
with ten members (n = 30), which is classified on the basis of two
predictor variables (predictor variables 1 and 2).

Increasingly homogenous groups are created as parent nodes are split into daughter nodes
on the basis of specific values of predictor variables. Splits are selected to maximize the
increase in node purity, as measured by the Gini index. The Gini index measures node impurity
and is calculated from of the number of cases belonging to each class in the node. The index is
calculated by subtracting the sum of the squared probability of each class’ occurrence in the
node from one (Equation (1)). The Gini index, where j is the class and p;j is the probability of

class j:
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Giniindex = 1 — ) " p? (1)

This means that when a node contains only one class the Gini index is zero, while when
there are equal numbers of all classes the index is one. In the example, Node 1 has equal
numbers of all classes so the Gini index is at its maximum value of one as node impurity is at its
maximum. In Terminal Node 7 the Gini index is 0.26 showing that it is lower when node purity

is higher.

Complex trees can be grown that maximize node purity by allocating every case to a
separate terminal node, but such an overfit tree is unlikely to be replicable with new datasets,
limits interpretability and has little practical significance. The result then is a trade-off between
node purity and tree size or interpretability. An overly large tree is created and then pruned back
based on an arbitrary decision, although in this research tree size is selected to minimize the
cross-validated error and maintain physical consistency. In the cross-validation process, the
dataset is randomly divided into subsets. To each subset of data a training/test sample approach
is applied to estimate misclassification rates in sub-trees. From this, a complexity parameter is
chosen that minimizes misclassification error and is used to select the optimal tree size. This
enables tree construction that is both statistically robust and physically consistent. It is
important to recognize that when looking at SEA rainfall using only STR intensity and position
as predictor variables the highest values of node purity are not expected as this would fail to
recognize the other modes of climate variability that are at play and are not being captured using
only these two predictors. High node purity is easily achievable when tree size is large, but in
this case the interpretability of the tree is often compromised. When tree interpretability is high,
node purity is often conceded as the tree is pruned back to a smaller size more manageable size.
Consequently, terminal nodes in classification trees are rarely completely pure (containing only
one class of data) and are more regularly comprised of multiple data classes, as we would
expect in climatic research using only two predictor variables to describe a complex variable
such as precipitation. CART uses a ‘majority rule’ to allocate each terminal node to a class, so
that the terminal node is allocated to the class to which a majority of its member belong. For
example, in Terminal Node 2 there are seven cases in class A, four cases in class B and one case
in class C. This means that this terminal node will be allocated as ‘class A’ and would be 58%
pure as 7/12 cases belong to the class employed by the majority rule. CART is robust to outliers
and extreme values among predictor variables as the technique tries to put divergent cases in

separate nodes (Rodionov et al. 2001).

Kirien Whan Chapter 6: Linear and nonlinear statistical analysis of the impact of sub-tropical ridge intensity and position

on southeast Australian rainfall.



158

In the current study decision trees were constructed using the statistical package R (R

Development Core Team 2012), with the library ‘rpart’ (Therneau et al. 2010).

6.4 Results

6.4.1 Results from linear statistics

Over the full record, negative correlations between SEA precipitation and STR intensity
and position (Table 6.2) show that as the intensity of the STR increases and as the STR moves

further south, precipitation in SEA decreases.

Table 6.2.Correlation between precipitation in SEA and STR intensity and
position in MAM and JJA.

STRI STRP
MAM —0.46 —0.19
JJIA —0.69 —0.53

The correlation with STR intensity is stronger and more significant than that with STR
position, particularly in MAM. This confirms previous linear research that found intensity is the
most important aspect of the STR to explain SEA rainfall variability (Timbal and Drosdowsky
2013), and is in general agreement with the known relationship between pressure and rainfall in
the subtropics (Ansell et al. 2000). The spatial correlation analysis of STR intensity and position

with gridded precipitation is shown in Figure 6.4.

MAM JUA SON DJF

STR °

STRP

nnnnnnnnnnnnnnnnnnnn

Figure 6.4. Seasonal correlation coefficients between STR intensity (top row)
and position (bottom row) and Australian rainfall in MAM, JJA, SON
and DJF over the period 1900 to 2009. Shaded areas show
significant correlations at the 95% confidence level. Refer to Figure
6.2 for the SEA region.

The seasonal cycle of both facets of the STR and SEA rainfall are closely linked.

Correlations strengthen during MAM and reach a maximum in JJA, before decaying throughout
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SON to a minimum in DJF. In MAM, the maximum correlation between rainfall and intensity
(position) is -0.65 (-0.60). As the relationship develops into the JJA months, the maximum
correlation between rainfall and intensity (position) is -0.74 (-0.68), again showing the
dominance of intensity over position. The spatial extent of significant correlations for both
intensity and position is the greatest in JJA, and larger for intensity than position. In MAM, all
significant correlations with intensity are negative, so increases in STR intensity is associated
with decreased precipitation (or no impact when the correlations are not significant). STR
position, however, has a more spatially variable relationship with precipitation; negative
correlations are evident in SEA but positive correlations are found further north. This shows that
the relationship with position depends on the mean location of the STR, which in MAM varies
between 37°S and 32°S, in between the areas with significant positive and negative correlations.
When the mean position of the STR is to the north (south) of the area considered, a shift south
in STR position will be associated with decreased (increased) rainfall. The mean location of the
STR in relation to SEA changes with the annual cycle (Figure 6.1), and also on a multi-decadal
timescale (see later this section), as such, the complexities of the STR position —rainfall
relationship are difficult to grasp with linear statistics. This is particularly relevant in MAM
when the mean position of the STR is located above SEA and is changing rapidly from a
southerly DJF position to a northerly position in JJA. The high variability found in the STR
position record adds an additional layer of complexity to the issue and results in few significant
trends (Timbal and Drosdowsky 2013). However, this mechanism shows that subtle variations
in the mean position of the STR are important for precipitation despite a lack of statistical

significance found with linear statistics.

Temporal changes are found in the relationship between STR position and Australian
rainfall over the instrumental record (Drosdowsky 2005, Timbal and Drosdowsky 2013).
Timbal and Drosdowsky (2013) found variation in correlation coefficients (calculated over 30-
year periods between 1929 and 2009) for relationships between SEA rainfall and both STR
intensity and position. They found less multi-decadal variability in the correlation between SEA
rainfall and STR intensity, with the largest changes evident in May. The relationship between
STR position and rainfall, however, shows more variability between the two 30-year epochs
(Timbal and Drosdowsky 2013). Timbal and Drosdowsky (2013) found that in July correlations
increase from -0.2 in the 1940s to -0.6 to -0.8 in the most recent period. In SEA, March and
April had negative correlations during the early period, while the end of the record shows
positive correlations in these months. These results outline the complexity of the relationship
between the STR position and precipitation, particularly in MAM, the vital transition season

between DJF and JJA patterns. Variability of the STR position is larger in JJA compared with
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that in MAM (standard deviation = 2.3° of latitude compared to 1.8° of latitude). Yet the mean
position of the STR in MAM is key, as the STR can be located either across or north or south of
SEA in this season, with the nature of the relationship depending on the position of the STR. In
the current research the epoch analysis (Figure 6.5) was conducted here to extend the
understanding of STR non-stationarity. Looking firstly at the relationship between rainfall and
STR intensity, the negative correlation is stronger and more extensive in Epoch 2, and when
correlations are significant in both epochs, magnitudes are also greater in the later epoch.
Specifically, in Epoch 2 significant correlations between STR intensity and rainfall are evident
across all of New South Wales (NSW), the majority of Queensland and into the Northern
Territory; compared with those in Epoch 1, where the significant correlations are confined to
SEA and Tasmania. The multi-decadal differences associated with STR intensity in MAM
include a reversal in the sign of the relationship as positive correlations present during Epoch 1

in Queensland are replaced by negative correlations in Epoch 2.

MAM JJA
1900-1949 1960-2009 1900-1949 1960-2009
(Epoch 1) (Epoch 2) (Epoch 1) (Epoch 2)
- 10
o o4 | © S \
&1 &1 o & A &4
. 0. 0. 9 " 0.
STRl _| N e ’ N
o AR ]
it L (ElLa ™
g | ¥ |l L J P w | 7] k. ]
£ b b 2 120 130 1k 150 120 130 1k 150 00
L] ] 3
o] 3 o4 2 24 \
| <
24 &4 » 24 &4 o8
STR-P 0 ) o\l i s )
ol N ey o] WAL | . VAo
" AN AT N T T
) ¥ | ¥ ; W | v 0

T T T r T T T T T T ) T T T
120 1% 1do 150 120 1% 140 1do 120 1% 140 150 120 1% i 1o

Longitude Longitude

Figure 6.5. Correlation coefficients between STR intensity (top row) and
position (bottom row) with rainfall in MAM (left two columns) and
JJA (right two columns) over two 50-year epochs: 1900 — 1949
(Epoch 1) and 1960 — 2009 (Epoch 2). Shaded areas show
significant correlations with 5% significance level. Refer to Figure
6.2 for the SEA region.

While the 20th century has seen an increase in the spatial extent and magnitude of the
correlation between STR intensity and rainfall in MAM, the opposite is true in JJA. This season
has experienced a reduction in the spatial extent of the correlation between STR intensity and
precipitation from Epoch 1 to Epoch 2. However, the spatial reduction is not associated with a
reduction in magnitude of the correlation over southern Australia where the relationship remains
significant (in contrast to the increases in correlation over SEA in MAM). Epoch 1 displays a
significant negative relationship over the majority of Australia (excluding Queensland), whereas

in Epoch 2 the significant correlations are confined to southern Australia. This may be related to
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a small long-term southward trend in the position of the STR over the 20th century (Timbal and
Drosdowsky 2013). Although Timbal and Drosdowsky (2013) found the strength of the STR
intensity correlation in SEA to be relatively steady over the 20th century, this analysis shows
that there are spatial differences in the extent of the relationship (away from SEA) in both

MAM and JJA.

Secondly, the relationship between STR position and precipitation has also changed
between the two epochs. SEA exhibits a reversal in the sign of the correlation between position
and rainfall over the 20th century in some months (Timbal and Drosdowsky 2013), which is
evident in the spatial correlation maps. In MAM during Epoch 1, there is a region of positive
correlation in north Queensland with negative correlation covering most of SEA. The region of
positive correlation shifted south and stretches east from South Australia down the east coast of
NSW, while the areas with negative correlation shrink and are confined to a small fringe along
the coast from South Australia to Victoria and western Tasmania in Epoch 2. During JJA, the
spatial extent of the correlation decreases over the 20th century, while the magnitude and sign of
the correlation over SEA are broadly unchanged. The key features are a negative relationship
dominating the SEA region and extending along the coast to Western Australia and a positive

relationship on the east coast.

This section of the analysis highlights the importance of utilizing long records in research,
as even here with 50-year epochs the non-stationarity of the series is evident. Different
conclusions can be drawn when a smaller or longer subset of the record is selected for the
analysis, although this can highlight how relationships change over time. Cai et al. (2011a)
concluded that MAM rainfall cannot be linked to the STR as only insignificant correlations (-
0.35 and 0.22 for intensity and position respectively) can be found in this season. This
difference stems from using a smaller subset of the dataset, although when longer time periods
are examined the relationship is significant (Table 6.2). The positive correlation (Cai et al.
2011a) found between STR position and SEA rainfall from 1979 to 2008 reflects the shifting
sign of the relationship found by Timbal and Drosdowsky (2013) and shown spatially in Figure
6.5.

It is worth noting that for SEA overall in JJA the evolution of the relationship between
STR intensity and position with rainfall between Epoch 1 and Epoch 2 is broadly similar, with
the biggest changes evident further north over inland Australia with little change across SEA.
This suggests that while the STR has shifted south (Timbal and Drosdowsky 2013), it has not
shifted south enough to change the relationship with rainfall over the southern parts of the
continent because of the northerly mean position of the STR in this season. Most changes are

evident further north where a shift south of the STR has had sizeable impact. More interesting
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are the changes in the relationships, outlined previously, between rainfall and both facets of the
STR in MAM; most notably, a strengthening of the relationship with intensity over most of
eastern Australia including SEA and a contraction of the negative influence of the STR position
to a very small part of SEA in conjunction with the increase in the area with a positive
relationship. These results illustrate that the relationship between the position of the STR and

rainfall is highly complex and changes over time depending on the mean location of the STR.

The association between the STR and SEA climatic variability is therefore evidently
nonlinear with the impact dependent on the background climatology (i.e. the difference in the
mean between MAM and JJA). The current linear analysis confirms and extends recent research
and gives a good understanding of how the STR varies throughout the year and how it has
changed over the instrumental record. Linear analysis has confirmed the dominance of STR
intensity (compared with position) in controlling SEA precipitation but does not provide a clear
picture about the interaction between the two aspects of the STR. Therefore, while linear
statistics are useful in basic description and analysis of such nonlinear processes, it is essential
that more complex statistics are employed to fully understand STR interactions. We will now

use CART to explore the nonlinear interactions between intensity, position and SEA rainfall.

6.4.2 Results from CART analysis
6.4.2.a MAM

In MAM, the CART procedure identifies four terminal nodes, with both predictor variables
required to adequately classify the data (Figure 6.6). The first split uses STR intensity to
separate 40/110 cases, confirming the predominance of STR intensity from the linear analysis.
This split defines the dry Terminal Node 2, when high STR intensity > 1021hPa. Node purity is
60% as high pressure is associated with low precipitation in nearly 2/3 of the cases, a high
percentage when considering the sample size (24 out of 37 dry years are identified solely on
STR intensity being above 1021hPa). Composite rainfall anomaly analysis of Terminal Node 2
(Figure 6.7) shows the spatial impact on precipitation as this node is characterized by negative
precipitation anomalies over much of SEA, with the largest negative anomalies are located in
the areas of largest mean rainfall (western Tasmania and on the Southern Alps). High pressure
is associated with a reduction in the mean westerly flow (Timbal and Drosdowsky 2013) and the

effects of this are clearly seen in the spatial pattern emerging from the composite anomaly map.
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Node 1:
STRI = 1021hPa to left
3737138
Terminal Node 2: Node 3:
STRI = 1021hPa STRP < 36.17° to left
Dry (60%) | 1327730
247108 /\
Node 6: Terminal Node 7:
STRI = 1019hPa to left STRI < 1021hPa
1325722 STRP236.17
/ \ Wet (80%)
28
Terminal Node 13:
STRI < 1019hPa
STRP < 36.17°
Wet (60%)
2815

Figure 6.6.Decision tree from the CART analysis in MAM after pruning to four
terminal nodes.

The first split supports the proposition that STR intensity is more important than position
in determining drought in SEA (Timbal and Drosdowsky 2013); however, the position of the
STR is necessary to understand the full range of precipitation variability as the second split (for
cases below 1021hPa) is made on position. When intensity is below 1021hPa and the position of
the STR is further south (= 36.17°) the CART technique classifies Terminal Node 7 as a wet
node with very high purity; ten cases during 110 years are classified in this terminal node with
80% belonging to the wet class and no dry cases classified into this group. The composite
analysis (Figure 6.7) of Terminal Node 7 displays positive rainfall anomalies over the whole of
SEA including the northern inland regions with very high anomalies on the eastern coast.
However, this very wet node displays a strip of negative rainfall anomaly over the southwest
coast of eastern Australia and Tasmania with the largest negative anomalies on the western
Tasmanian coast. This pattern of negative and positive rainfall anomalies is consistent with
tropical penetration of moisture from northern Australia and is reminiscent of a ‘summer-like’
rainfall pattern, as opposed to the ‘winter-like’ rainfall anomalies where one would expect to see

largest rainfall anomalies along the southern edge of the continent.

Kirien Whan Chapter 6: Linear and nonlinear statistical analysis of the impact of sub-tropical ridge intensity and position

on southeast Australian rainfall.



164

Composite anomalies
Terminal Node 13 Terminal Node 12
25 25 400
North - » a0
y 35 5 .
a Terminal Node 2
® % 150
10 -0 i 100
T T T o 50
& 130 140 150 130 140 150 15
ml 36.17° 3 - 5
| Terminal Node 7 g {"\ 100
(/2] 2 40 -150
“1
H‘D M‘D WE:D
-300
-400
South
-500
V 130 140
1019 1021
hPa hPa
STR-I

Figure 6.7. Seasonal precipitation composite anomaly maps (mm/year) for a
large part of the Australian continent encompassing SEA in MAM.
Composites are based on seasonal means from 1900-2009.

When the position of the STR is in a more northerly position (< 36.17°) the third split is
based on intensity. When the STR intensity is low (< 1019hPa) and the STR is in a northerly
position a wet MAM occurs (Terminal Node 13). The composite seasonal precipitation anomaly
for this terminal node (Figure 6.7) shows that positive precipitation anomalies confined to SEA,
with the largest positive anomalies along the Southern Alps and in western Tasmania while
negative anomalies are present in this node along the eastern coast of NSW. Spatially rainfall is
consistent with an increase westerly flow and is therefore more ‘winter-like’. Although
Terminal Nodes 7 and 13 are both classified as wet nodes, spatially the precipitation between
these two nodes are very different. In Terminal Node 7 wet conditions occur when the STR is in
a southerly position (= 36.17°) even when STR intensity is above average (up to 1021hPa while
the MAM mean is below 1020hPa), while in Terminal Nodel3 wet ‘winter-like’ conditions
occur only when STR intensity is below average and the STR is in a more northerly position (<
36.17°). These two terminal nodes show two of the possible positions of the STR in the

transition season.

Finally, when the STR is at low latitudes and STR intensity is at median levels (between
1019 — 1021hPa) an average terminal node is defined. Terminal Node 12 is a highly
heterogeneous node with 11 dry cases, 17 average cases and 8 wet cases. The low node purity
clearly indicates that this final node is poorly determined by both STR intensity and position,
and hence in these cases another variable is likely to be the primary driver of the rainfall
variability. This is logical because it corresponds to years with near average STR intensity and

position. As expected, the rainfall composite map for Terminal Node 12 does not show spatially
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consistent rainfall anomalies across the SEA region although further south, in Tasmania,
positive anomalies are similar to the rainfall regime associated with Terminal Node 13. The low
latitude of the STR in this node is only evident in these Tasmanian anomalies while across the

continent rainfall anomalies are small and patchy.

The years identified in each terminal node can give additional information about variability
in rainfall regimes. Figure 6.8 shows the time series for SEA rainfall in MAM (vertical bars),
the terciles that the data was split into for the CART analysis (horizontal lines) and the terminal
nodes each year was classified into (colours of vertical bars). It is clear that the recent MAM-
dominated rainfall deficit is associated with STR intensity. Eleven of fourteen years in the last
two decades classified in Terminal Node 2 are dry years. This supports the research that found
increased STR intensity to be the primary driver of the recent rainfall deficit, particularly in
MAM (Timbal and Drosdowsky 2013) as high pressure is associated with lower rainfall owing

to increased stability of the air column and a weakening of the mean westerly airstream.
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Figure 6.8.SEA MAM precipitation time series. Colour of the vertical bars
indicates the terminal nodes the year has been classified into. The
red and blue horizontal lines indicate the cut-off points for the
original classification (dry, average and wet), giving an indication
of misclassification when the horizontal and vertical classifications
do not match.

The ‘summer-like’ rainfall pattern associated with Terminal Node 7 has been a rare event
over the instrumental record, with only ten cases recorded. The low number prevents an in-
depth analysis but it can be noted that while only four cases were recorded by the first half of
the record (1900-1955), six were recorded in the second half, with cases observed in every
decade and hence are a continuing occurrence. On the contrary, while Terminal Node 13 has

been more common over the entire record (25 cases recorded), in the last 30 years has only seen
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this ‘winter-like’ pattern occur once in 1995, while the ‘summer-like’ wet pattern was observed

three times (1989, 1990 and 2007).

Overall, increasing STR intensity over the latter part of the 20th century has seen an
increase in the occurrence of the dry Terminal Node 2, a near disappearance of the ‘winter-like’
wet Terminal Node 13 in the last 30 years and a small increase of the rare occurrences of

‘summer-like’ wet MAM.

6.4.2.b JJA

In JJA, the first split in the CART model is on intensity (Figure 6.9), separating a dry node
(Terminal Node 2) with 49/100 years (with 65% purity) when intensity is high (= 1022hPa); this
is very similar to MAM. The higher threshold value in JJA compared with that in MAM is
consistent with the higher climatological value as shown in the annual cycle (Figure 6.1). The
increased node purity in JJA’s Terminal Node 2 compared with MAM is consistent with the
higher correlation between STR intensity and rainfall in JJA compared with that in MAM. The
composite rainfall anomaly analysis (Figure 6.10) for this high intensity group (Terminal Node
2) displays a broad region of negative precipitation anomalies over SEA, with the largest
anomalies on the mountain regions and western Tasmania, combined with a small region along
the eastern seaboard that displays a positive precipitation anomaly. Again, for SEA, this is very
similar to MAM. The main difference between the two seasons is that in JJA the second split is
also based on intensity (<1020hPa), with position counting only in a third split between
Terminal Nodes 12 and 13 (Figure 6.9). Terminal Node 7 is classified as wet and is 100% pure
but is a rare occurrence (6/110 years). The composite anomaly pattern of this low intensity wet
terminal node has a spatial pattern that is reminiscent of the ‘winter-like’ Terminal Node 13 in
MAM with the largest positive anomalies along the Alps and in the west coast of Tasmania and
the mainland with negative anomaly found on the eastern seaboard, i.e. east of the GDR. The
rainfall patterns of Terminal Nodes 2 and 7, which are mirror images suggest a linear
relationship between intensity and precipitation as high or low pressure (either >1022 or

<1020hPa respectively) is associated with high and low precipitation extremes.
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Terminal Node 2:
STRI = 1022hPa
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Terminal Node 7:
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Wet (100%

NG

Terminal Node 13:
STRI: 1020 - 1022hPa
STRP > 30.5°

Wet (77%)
12110

Figure 6.9. Decision tree from the CART analysis in JJA after pruning to four
terminal nodes.

The rainfall pattern emerging from Terminal node 12, highly heterogeneous modes with
many average years as was the case in MAM and more wet years than dry years and a rainfall
pattern tending towards wetter across SEA but half way between wet Terminal Node 7 and dry

Terminal Node 2.
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Figure 6.10. Seasonal precipitation composite anomaly maps (mml/year) for a
large part of the Australian continent encompassing SEA in JJA.
Composites are based on seasonal means from 1900-2009.

An interesting result of the JJA CART model is that when STR intensity is fairly neutral
(between 1020 and 1022hPa), the position of the STR is identified as being important. When the
position of the STR is at further south (latitudes > 30.5°) the result is Terminal Node 13, a wet
node with high purity (77%). Although, the CART model was constructed using anomalies
across SEA and the rainfall anomalies across SEA are very similar between Terminal Nodes 12
and 13, the most visible differences on the composite anomaly maps are located further north.
Negative rainfall anomalies are evident across eastern Australia when the STR is further north
(Terminal Node 12), but positive anomalies extend across all eastern Australia when the STR is
located further south (Terminal Node 13). This difference between the two nodes illustrates that
the two facets of the STR (intensity and position) are not independent; a ridge of moderate
intensity will prevent rainfall bearing westerly front to penetrate inland is located north, but this
effect disappears when the STR is displaced further south. Although it is also very likely that in
those years with neutral STR intensity, neither STR position nor intensity are the major forcing
and other large-scale modes of climate variability (possibly due to ENSO as the effects start to

be felt in JJA) are important in these terminal nodes.

The years classified in each terminal node in JJA are noteworthy (Figure 6.11). The
enhanced ‘winter-like’ group (Terminal Node 7) is rare throughout the instrumental record and
has not occurred since 1981, making the last 28 years the longest stretch without an occurrence
of this node. Also of interest is the disappearance of the wet Terminal Node 13, last observed in
1978. There is no other 30-year period, during the instrumental record, when this wet node has

not occurred.
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Figure 6.11. SEA JJA precipitation time series with ENSO years marked by
dots. Colour of the vertical bars indicates the terminal nodes the
year has been classified into. The red and blue horizontal lines
indicate the cut-off points for the original classification (dry,
average and wet), giving an indication of misclassification when
the horizontal and vertical classifications do not match.

The signal of the recent drought is found primarily in MAM (Murphy and Timbal 2008),
but there is evidence of a growing importance of the JJA rainfall deficit (Timbal 2009). In the
last two decades 7 years are classed as dry, with all of these dry years classified on the basis of
high STR intensity into Terminal Node 2. However, this is not unprecedented as many periods
in the past have large numbers of dry years classified on the basis of high STR intensity.
Although the node purity in Terminal Node 2 is very high, three wet years appear in the dry
terminal node. Interestingly, for over 90 years no wet years were found when STR intensity was
high yet the three wet instances have occurred in the last 15 years — 1995, 2003 and 2005. This
could be purely random as it is a very small number, but it is also interesting to note an increase
in the occurrence of average rainfall years when STR intensity is high (Terminal Node 2) from
3 cases in the first half (1900—1955) of the record to 11 cases in the second half. Precipitation in
SEA during these 3 years is much higher than other cases in the same terminal node (1.82
mm/day compared with 0.92 mm/day across the remainder of Terminal Node 2), which may be
because of a warming of sea surface temperature (SST) surrounding Australia (Casey and
Cornillon, 2001). The rainfall for these three wet years in Terminal Node 2 was analysed
further. The spatial analysis reveals that the positive precipitation anomalies for the three wet
years in SEA are widespread, with negative anomalies along the eastern coastal strip. The
intensity of the STR is slightly lower on average in these wet cases (1023.8hPa rather than
1024.1hPa for Terminal Node 2); however, the STR is 2.4° further north during these 3 years
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(29.3°S compared with 31.7°S for Terminal Node 2). An analysis of the moisture transport (not
shown) points to the possibility that during these years, despite the northerly location of the
STR, anomalous moisture flux originating from the Coral Sea (150° — 170°E, 5°S-25°N)
reaches SEA from the north and may contribute to reduce easterly flow along the NSW coast (in
agreement with the rainfall anomalies). This exploratory analysis is far from definitive and

further research is required to confirm this hypothesis.

6.4.3 Interaction with ENSO

As ENSO events develop during JJA we may expect to see some interaction between
ENSO and the STR in this season that is not evident in MAM. In the MAM analysis ENSO
events are evenly spaced throughout the four terminal nodes as expected as there is little ENSO
signal during this season (not shown). During JJA, however, El Nfio events are much more
tightly grouped with 18/25 events occurring in Terminal Node 2 (dots in Figure 6.11). Of the 18
El Nifio events classified into this dry terminal node, all show average (3 years) or below
average (15 years) rainfall. Interestingly, the remainder of the ENSO years classified into other
terminal nodes are more evenly distributed with a counter-intuitive tendency towards being wet:
one dry, three average and three wet El Nifio years. This analysis suggests a strong interplay
between ENSO and the STR in JJA. This supports the conclusions of Cai et al. (2011a) that
found a strong relationship between tropical variability (expressed through the Indian Ocean
Dipole) and the STR in this season. Indeed ENSO variability contributes to STR variability as it
can be seen that most of the El Nifo years end up having above average STR intensity
(Terminal Node 2). In addition, STR variability appears to be able to modulate El Nifio impact

on SEA rainfall: El Nifio years classified in other nodes are a mix of wet, dry and normal years.

6.4.4 Vector wind analysis

Further analysis of the climatology of the terminal nodes is performed by looking at lower
tropospheric wind in both MAM and JJA. The composite vector wind analysis for the years
between 1948 and 2009 identified in each terminal node identified in the CART analysis can be
seen in Figure 6.12 for MAM and Figure 6.13 for JJA. Over the period 1948-2009, the mean
flow over the study region is westerly airflow of between 2 and 6m/s in MAM, picking up to 4—
8 m/s in JJA, and intruding further over the Australian continent in JJA compared with MAM.
In the dry Terminal Nodes of both MAM and JJA (both Terminal Node 2), the anomalous flow
over the study region is south-easterly (MAM) to easterly (JJA) as part of a broad anti-cyclonic

regime over the study region (with corresponding high rainfall in JJA along the east coast at the
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location of the strongest easterly anomalies as the GDR acts to uplift the moist oceanic air). The

strongest anomalies are in JJA.
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Figure 6.12. The 850hPa vector wind MAM mean (top diagram) and
composite anomalies (for the four terminal nodes, below). Units are
m/s. Computed from re-analysis from 1948-2009.

The anomalous wind flow in MAM’s Terminal Node 7 and JJA’s terminal Node 13 shows
the southerly position of the STR, with easterly anomalies (i.e. weakening of the westerly flow)
on the southern side of the STR. In the case of MAM, where Terminal mode 7 was linked to a
‘summer-like’ rainfall node, wind anomalies can be seen to originate from the tropics (Figure
6.12). Strong easterlies over north Queensland are reduced (1.5-2 m/s) and instead northeasterly
anomalies affect SEA. The predominant westerly anomalies on the western and southern flank

of the STR are strongly reduced (up to 2m/s) and shifting south.

Finally, the anomalous vector wind composites for Terminal Nodes 12 and 13 in MAM
(Figure 6.12) and Terminal Nodes 7 and 12 in JJA (Figure 6.13) show the different flavour of
westerly mean flow being pushed further north and hence affecting SEA, and the strength of the
anomalies and the location of the westerly maximum differ from case to case. The most obvious
case is the wind anomalies for JJA’s ‘winter-like’ Terminal Node 7; it displays the large

westerly wind anomaly in excess of 2m/s over inland Australia, suggesting a strong push of the
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westerlies further north. In the case of MAM’s Terminal Node 12, wind anomalies are harder to
reconcile with the rainfall anomaly maps than in the other previous terminal nodes. They show
consistent westerly anomalies over SEA, yet a very limited rainfall signature apart from a small

region on the Victorian coast and Tasmania.
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Figure 6.13. The 850hPa vector wind JJA mean (top diagram) and composite
anomalies (for the four terminal nodes, below). Units are m/s.
Computed from re-analysis from 1948-2009.

6.5 Discussion and conclusions

This is a pioneering study introducing the use of CART to explore complex relationships
within the climate system, and the large-scale influences of regional rainfall in SEA. The focus
in this study is on the interplay between STR changes in both intensity and position, and SEA
precipitation in MAM and JJA. CART analysis is used to complement results obtained with

linear statistics.

The linear analysis confirms recent research showing the relationship between STR
intensity and position with SEA rainfall in all seasons (Williams and Stone 2009). The dominant
role played by changes in intensity over position for SEA rainfall variability is highlighted,
particularly in light of the current rainfall deficit in SEA, which is mainly a MAM phenomenon
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with an additional contribution in JJA (Timbal and Drosdowsky 2013). Rainfall in both seasons
displayed a stronger relationship with STR intensity than with position and followed a seasonal
cycle with correlations reaching maximum values (spatial extent and magnitude) in JJA.
However, a split in two 50-year epochs showed significant changes in the relationship between
the STR and precipitation over time. Most notable was a change in the sign of the relationship
with the position of the STR in MAM across SEA, which highlighted the importance of the
mean position of the STR, particularly in a non-stationary climate. Correlation and regression
analysis are traditionally used heavily to investigate relationships within the climate
system(Timbal and Drosdowsky 2013, Williams and Stone 2009) so we turned to more complex
nonlinear statistics to confirm and extend the current understanding. This is important because
correlation analysis, particularly when sample size is limited to about hundred years, does not
provide a robust understanding of more complex issues such as the interplay between position
and intensity, i.e. linear regression does not indicate an additional role for changes in position
beside the STR intensity (Timbal and Drosdowsky 2013). The nonlinearity of the relationship
hinted at by computing correlations over different epochs, and the complex interplay between
changes in position and intensity was investigated further by using classification trees.
Confirming our understanding of the system gained from the linear analysis, the CART analysis
showed that intensity was the most important variable in both seasons for classifying dry years
but also played a role in classifying wet years. Most importantly, the CART analysis was able to
tease out the complexities of this interaction and how the two aspects of the STR (intensity and

position) interact.

The CART analysis confirms that STR intensity is the most important variable for
classifying dry conditions in both MAM and JJA; in both seasons, the first split identified dry
terminal nodes with negative precipitation anomalies over SEA classified on the basis of high
STR intensity. An analysis of vector wind anomaly composites for these nodes showed a
reduction in the mean westerly flow across SEA. This is consistent with the spatial rainfall
composite for these years, with negative precipitation anomalies across the entire region under
the influence of frontal activity in both seasons. The years in each of the dry terminal nodes
confirmed that the current rainfall deficit is linked to increasing STR intensity (Timbal 2009).
Indeed, in the last two decades a majority (11/13) of dry MAMSs are classified in the dry
terminal node (on the basis of high STR intensity) and while the rainfall deficit in JJA is not as
severe, one can observe that all dry years in the last two decades are classified into the dry

terminal node on the basis of high STR intensity.

But the real value of this approach is that the complexities of the STR position—rainfall

relationship that were masked by the coarse linear analysis appear more clearly within the
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CART analysis. Indeed, the STR position is needed in both seasons to classify the remaining
years. In MAM, position played a more prominent role when intensity is close to or below
average, the secondary split in the CART analysis is based on position. This greater role for
position in MAM is consistent with the large changes in position observed in this transition
season. In JJA, position was only necessary for a third split between terminal nodes when
intensity was neither significantly above or below average. Indeed in JJA, the relationship
between rainfall in SEA and STR intensity appears more linear than in MAM with extreme
values of intensity associated with the driest and wettest cases. In this season, the position of the
STR is only playing an important role when intensity is near average. Overall, in both seasons,
the fact that the role of the STR position depends on the intensity of the STR may explain why
multiple linear regression statistics cannot find an additional role for the STR position
independently of the STR intensity (Timbal and Drosdowsky 2013). It is only once particular
intensity conditions are met that position becomes important to determine the sign and spatial

signature of precipitation anomalies over SEA.

One of the most revealing findings is the role that STR position has in MAM on the
atmospheric circulation. The CART analysis revealed two wet regimes in MAM that are very
different in their nature; a ‘summer-like’ rainfall node (Terminal Node 7) and a ‘winter-like’
rainfall node (Terminal Node 13). The ‘summer-like’ rainfall node shows that when intensity is
low and the STR is in a southerly position wet conditions are evident over much of the east
coast as tropical interactions bring moist air to southern Australia. This combines with a
reduction of the mean westerly flow which pushes frontal activity south resulting in the negative
precipitation anomaly on the Victorian coast, indicative of the southerly position of the STR.
The highest rainfall anomalies are apparent on the eastern coast as the mean anti-cyclonic winds
associated with the high-pressure cell bring a moist onshore airflow over the continent. The
positioning of the STR at higher latitudes is consistent with a widening of the tropics and
Hadley Circulation (Seidel et al. 2007), although the rare occurrence of this node does not
enable us to draw very firm conclusions apart to note that it has occurred in the most recent
decades. More importantly, the existence of this ‘summer-like’ node highlights that natural
variability in the width of the tropical zone is associated with rainfall anomalies over eastern
Australia as far south as SEA, despite the lack of relationship between rainfall in SEA and
tropical modes of variability in MAM (Timbal et al., 2010). This ‘summer-like’ rainfall mode
differs markedly from the ‘winter-like’ node (Terminal Node 13) and highlights the role of the
STR position. When the STR is located in a northerly position (< 36.17°) the precipitation

pattern is indicative of precipitation caused by cold fronts imbedded in a moist westerly airflow;
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positive anomalies confined to the SEA region with the largest values on the Alps and the west

coast of Tasmania, suggesting an increased mean westerly flow.

Overall, the CART analysis shows that in JJA the effects of position are not well defined.
This is consistent with the mean position of the STR, north of SEA during this season and fairly
stable across the JJA months while in MAM it was noted to change dramatically from month to
month from a position south of SEA to the north (Figure 6.1). Overall the CART analysis
confirmed many known features identified using simple correlations. The increased node purity
in all terminal nodes in JJA compared with that in MAM is consistent with the higher
correlation between both STR intensity and position with rainfall in JJA. The threshold values
upon which splits were based support the seasonal cycle, i.e. higher threshold values for STR
intensity in JJA is a result of higher STR intensity during the JJA months compared with the
MAM months. The precipitation patterns of JJA’s dry and the wet terminal nodes (Terminal
Nodes 2 and 7) are mirror images of each other (see also the vector wind analysis) and are
associated with high and low STR intensity because of the linear nature of the relationship
between STR intensity and rainfall in this season. Overall, the CART analysis confirms that the
STR intensity—rainfall relationship is much more linear than in MAM and that the nonlinear
relationship with the STR position play a minor role for rainfall as the STR is located further
north. Terminal Nodes 12 and 13, however, are classified on the basis of STR position, and the
composite analyses (precipitation and vector wind) of these nodes do not show many

differences in SEA, although more sizeable differences are seen further north.

On the basis of the analysis provided here, one can conclude that while the position of the
STR plays a clear role in MAM it is not the case in JJA and this is likely owing to the mean
position of the STR in both seasons. In JJA, the mean position of the STR is to the north of the
study region, and thus variation in the position has little effect on precipitation in SEA, while
variation in STR intensity is still able to play an important role during this season. Variability in
STR position has a more important association with precipitation in SEA in MAM, the
transition season from a southerly to a northerly position, as the mean position of the STR is

further south combined with its annual meridional movement.

A noted feature of the JJA CART analysis was a small number of wet years, three amongst
the predominantly dry Terminal Node 2, which occurred in the most recent period (1995, 2003
and 2005). These three cases experienced much higher rainfall while the intensity of the STR
remained high, although the mean position of the STR was further south in these 3 years
compared to the full record. No wet cases were recorded during the first 94 years of the
instrumental record yet three wet cases were recorded in the last 15 years. The anomalous vector

wind analysis of these years showed that a moist northerly airflow dominated SEA. Analysis of
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the Coral Sea SST showed that all 3 years had positive SST anomalies in this region; in addition
2003 and 2005 were in the top 10th percentile. This shows that in rare occasions, despite high
STR intensity, a small shift southward of the STR position, in combination with warm SST
anomalies in the Coral Sea region, may affect precipitation in SEA. It was suggested that
perhaps these occurrences have only recently appeared in the record because of increased
regional SST (Casey and Cornillon 2001). Although logical, this hypothesis would require more
in-depth analysis to be demonstrated. Less controversial were the results showing interplay
between El Niflo events and STR intensity in JJA, i.e. El Nifio events predominantly being
observed in conjunction with above-average STR intensity and resulting predominantly in dry
years, while other El Nifio years not associated with above average STR intensity were
predominantly average or wet years. This suggests that both ENSO variability impacts STR
variability, and that independent STR variability can also modulate the impact of ENSO on SEA

rainfall.

It is clear that in recent years STR intensity has been important for precipitation in SEA
(Timbal and Drosdowsky 2013) but that the role of position should not be underestimated,
particularly in MAM, despite the lack of additional effect reported in that same study (Timbal
and Drosdowsky 2013). Indeed it has been shown here that MAM precipitation variability in
SEA cannot be described solely by STR intensity and that wet years in particular require the
role of position to be understood. The mean STR intensity in MAM is 1020.2hPa, and we see in
the classification tree that over the instrumental record when the intensity is > 1021hPa
conditions are dry 60% of the time. The implications for this relationship in a climate change
regime are interesting; while the magnitude is unclear at this stage, changes to the Hadley
Circulation under a climate change regime are likely (Seidel et al. 2007). Owing to its
geographic position, SEA is highly sensitive to changes in the STR position. Consequently, the
subtle effect position has precipitation in SEA, while not as important as the impact of rising

intensity, should not be discarded.
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Chapter 7 : The potential predictability
of hydroclimatic regimes with random
forest and linear regression models

7.1 Chapter summary and context

Previous chapters have established the significant linear relationships between the set of
predictor variables used throughout the thesis, including indices of Pacific and Indian Ocean
variability and indices capturing facets of the STR, and Australian hydroclimatic variability
(Chapter 4). In addition the value of a tree-based approach in giving insight to interactions
between tropical and sub-tropical climate drivers that are important for Australian rainfall
regimes has been demonstrated (Chapters 5 and 6). This chapter builds on the previous work
and explores the potential predictability of seasonal hydroclimatic regimes (rainfall and soil
moisture), defined from tropical and sub-tropical predictor variables, using a classical linear
framework and the tree-based methods. The full discussion of background literature and

methods can be found in Chapters 2 and 3.

Agricultural, environmental and water system management require seasonal hydroclimatic
forecasts. We investigate two statistical techniques (multiple linear regression and tree-based
models) for assessing the potential predictability of rainfall and soil moisture in Australia, at
lead-times of 0-11 months. Predictor variables include indices for Pacific- and Indian-Ocean
climate modes and the sub-tropical ridge. We find that: (1) linear regression and tree-based
models have comparable predictive skill; (2) model skill is greatest when the impact of tropical
climate modes is largest in austral winter, spring and summer for rainfall and soil moisture; and
(3) greater skill can be achieved in predicting lower-layer soil moisture (below 0.2 m) than for
rainfall and upper-layer soil moisture, because of the natural smoothing in lower-layer soil
moisture. The last result could improve seasonal forecasting of water availability and

hydroclimatic regimes, especially for agricultural applications.

7.2 Introduction

Increasing understanding of the predictive persistence of relationships between predictor
and response variables at the catchment scale is needed for efficient water resource management
and informed risk based decision-making in regions of high hydroclimatic variability (Leblanc
et al. 2009). The focus throughout this thesis has been primarily on rainfall, but soil moisture is

an important hydroclimatic variable because it interacts with runoff (Chiew et al. 2011), has
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regional-scale feedbacks with rainfall (Garcla-Garcla et al. 2011) and temperature (Cai and

Cowan 2008b).

This research is set in a seasonal forecasting context, but the aim is to explore of predictive
persistence of relationships between a response variable and a set of predictor variables using
the tree-based models, rather than to specifically create improved seasonal forecasts for
Australia. Two approaches are widely applied to seasonal forecasting. Computationally
intensive dynamical models that do not suffer from stationarity constraints (Lim et al. 2011)
(but are often ‘tuned’ to the current climate) are moving to the forefront of climatic research. In
comparison, statistical models have the advantage of increasing understanding of physical
processes at little computational cost. As such, although statistical models are limited to
understanding variability during the instrumental record, they remain a powerful tool in this
type of application, which is focused on understanding relationships between predictor and

response variables.

The predictability of Australian hydroclimate primarily stems from lagged relationships
with persisting tropical modes of climate variability (Simmonds and Hope 1997), including the
El Nifio — Southern Oscillation (ENSO) (Drosdowsky and Williams 1991, Kirono et al. 2010,
Nicholls et al. 1997) and the Indian Ocean Dipole Mode (Nicholls 1989, Saji et al. 1999). The
sub-tropical ridge (STR) also has an important relationship with southern Australian rainfall
(Drosdowsky 2005, Timbal and Drosdowsky 2013, Whan et al. 2013). This should not imply
that other large-scale climate drivers are not equally important, but the focus in this research is
on interannual interactions between tropical and sub-tropical climate drivers that influence

Australian hydroclimatic regimes.

Classification and regression trees (CART) (Breiman et al. 1984) are a set of statistical
techniques that can clarify non-linear aspects of relationships between event-based predictor and
response variables (Firth et al. 2005). These methods have been used to diagnose relationships
between southeast Australian rainfall and facets of STR behaviour (Whan et al. 2013), to predict
hydrological regimes from indices of sea surface temperature (SST) and antecedent streamflow
(Wei and Watkins 2011) and to predict the onset of climate regimes from SST indices in
Western Australia (Firth et al. 2005). Random forests are a bootstrapping version of CART that
protects against the over-fitting problems that tend to affect other tree-based methods (Breiman

2001).

Here we compare random forests with traditional multiple linear regression, with particular

emphasis on the predictability of soil moisture and rainfall.

Kirien Whan Chapter 7: The potential predictability of hydroclimatic regimes with random forest and linear regression

models



7.3 Data and methods

179

Spatially aggregated terciles of gridded rainfall, upper-layer soil moisture (USM, soil

depths typically < 0.2 m) and lower-layer soil moisture (LSM, soil depths typically > 0.2 m) for

the 110-year period 1900 — 2009 are used as response variables. These quantities were derived

from the Australian Water Availability Project data set (Raupach et al. 2008). All quantities

used here are area-averaged over 12 Australian drainage divisions (National Land and Water

Resources Audit 2001) (Table 7.1).

Table 7.1. Names, abbreviations and annual average rainfall for each of the

drainage divisions used as response variables.

Drainage Division Region  Average annual_ lrainfall
Number (mm year™)
Timor Sea (TiS) 879.95
Gulf of Carpentaria (GoC) 2 786.67
Northeast Coast — Sea (NECS) 3a 1145.66
Northeast Coast — Burdekin/Fitzroy (NECBF) 3b 654.89
Murray-Darling Basin Agricultural (MDBA) 4a 53944
Murray-Darling Basin Semi-Arid (MDBSA) 4b 326.00
Murray-Darling Basin Wet (MDBW) 4c 1056.35
Southeast Coast (SEC) 5 862.76
Tasmania (Tas) 6 1428.03
South-Australian Gulf (SAG) 7 354.49
Southwest Coast (SWC) 8 452.84
Indian Ocean (10) 9 27438

Terciles were calculated for each of the four standard seasons (MAM, JJA, SON, and

DJF). Predictor variables include 14 seasonally averaged indices characterising large-scale

modes of climate variability in the Pacific and Indian oceans, together with the position and

intensity of the STR (Table 7.2).
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Table 7.2. Indices of large-scale modes of climate variability used as
predictor variables in the linear and tree-based statistical analysis.

Name Group Reference

Nifio 3 Pacific Ocean (Trenberth 1997)
Nifio 3.4 Pacific Ocean (Trenberth 1997)
Nifio 4 Pacific Ocean (Trenberth 1997)

El Nifio Modoki Index (EMI)

Southern Oscillation Index (SOI)

Tri-pole Index (TPI)
Region C

Nicholls” SST gradient
Northwest Shelf (NWS)
Dipole Mode Index (DMI)
DMI - Eastern Pole

DMI — Western Pole

Pacific Ocean
Pacific Ocean

Pacific and Indian Ocean

Indian Ocean
Indian Ocean
Indian Ocean
Indian Ocean
Indian Ocean
Indian Ocean

(Ashok et al. 2007)

(Troup 1965)

(Timbal and Hendon 2011)
(Cai and Cowan 2008a)
(Nicholls 1989)

(Timbal and Murphy 2007)
(Saji et al. 1999)

(Saji et al. 1999)

(Saji et al. 1999)

(Drosdowsky 2005, Timbal and

STR — Intensity STR Drosdowsky 2013)
B N (Drosdowsky 2005, Timbal and
STR — Position STR Drosdowsky 2013)

From the complete data set, 10 ensembles were created with each member consisting of a

‘training’ data set (80 randomly selected years) and a ‘test’ data set (the remaining 30 years)

Random forest (each containing 100 individual trees) and stepwise selected multiple linear
regression models were constructed from the training data in each ensemble and were evaluated
against corresponding test data. Model skill is defined by the correlation between predicted and

observed terciles in the test data sets.

First, the random forest and linear regression techniques are compared by assessing their
skill at predicting Murray-Darling Basin rainfall in SON from the preceding nine overlapping
three-month seasons (e.g. SON, ASO, JAS etc.). The spread of skill scores from the random
ensembles indicates the range of skill score uncertainty. The separation in skill levels required
for significance is arbitrarily assessed at 0.1. The random forest technique is then applied to
other regions (Table 1), seasons and response variables (rainfall, USM and LSM) (Figures 7.2
and 7.3).

7.4 Results and discussion

7.4.1 Model comparison

The linear regression and random forest models show similar skill at predicting SON
rainfall in the Murray-Darling Basin (Figure 7.1). Skill is nearly steady (within statistical
variability) at 0.4 to lead-times of 4-months, when model skill decreases and statistical noise
increases. At longer lead-times the skill of both methods declines, consistent with the

autocorrelation time scale of ENSO. Random forest models have the additional benefits of
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reducing over-fitting and requiring no assumptions about the distribution of data (Hastie et al.,
2001). This comparison provides confidence that the following results, all obtained with random

forest, are unlikely to be dependent on method.

s | SON [ASO [ JAS [ JJA [ MJuJ | AMJ [MAM | FMA | JFM
N = —_— —_
et S R o
o e
LR | I (R P | =
R LR = Ll e
I
04 | LRIoH : : LR[_,_
| 'R LR| ! ! RF I __ !
| | | LR |
= 0-2 '!': ! | 1 : | RF| LRI :
= e | M
o 00 R — : — e
-8 [ o ER Iu L : |
= _:_ : : | 1 A ! :
-0.2 R [
M Lo [ .
i I R I o
| ! : -
! |
0.4 : | !
—_ P |
—l_
-0.6
-0.8
Lead-Time

Figure 7.1. Model skill for the stepwise selected linear regression models
(“LR”) and the random forest (“RF”) analysis predicting all-MDB
(Regions 4a, 4b, 4c combined) SON rainfall from lagged predictor
variables. Boxes indicate the 25" — 75" percentile; top panels
indicate months used to predict SON rainfall. The box and whisker
plots show the range of skill scores of the 10 random ensembles.

7.4.2 Prediction of hydroclimatic regimes

The skill of random forest models at predicting seasonal rainfall, USM and LSM for three
representative regions in the southeast, northeast and southwest of the continent (Figure 7.2)
shows that predictability of rainfall and USM is generally greatest in regions (4b - northeast and
3a - southeast) and seasons (JJA, SON, DJF) where the relationships with large-scale modes of
climate variability are strongest. This shows the statistical models are capturing known sources
of predictability (Drosdowsky and Chambers, 2001; Kirono et al.; 2010, Risbey et al.; 2009). In
addition, we see skill in regions (southeast, southwest) and seasons (MAM, DJF) not identified
in previous work (Drosdowsky and Chambers, 2001), because additional predictor variables are
included here. The key addition is the STR, which has been found previously to be an important

predictor of rainfall in southern Australia in MAM and JJA (Drosdowsky, 2005).
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Figure 7.2. Skill of random forest models at predicting rainfall (black solid),
upper-layer soil moisture (red dashed) and lower-layer soil
moisture (blue dot-dashed) in SON with increasing lead-time
(months). The spatial distribution of regions is shown in Figure 7.3.
Region numbers correspond to regions outlined in Table 7.1.

The remainder of this discussion focuses on regions and lead-times with ‘useful’
predictability (which is qualitatively assessed as skill levels greater than 0.4). Firstly, in Region
4b (southeast) rainfall and USM are skilfully predicted in JJA and SON at short lead-times only.
Skill levels in JJA and SON are affected by the ENSO ‘autumn predictability barrier’
(Balmaseda et al. 1995). The short-lead predictability of JJA rainfall and USM is related to their

near-instantaneous response to ENSO. LSM is not predictable in ENSO-driven regions in JJA at
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short lead times because available surface water requires time to penetrate into deeper soil
layers. Secondly, in Region 3a (northeast) USM and rainfall are skilfully predicted in SON, and
predictions of USM and LSM are skilful at longer lead-times (~6 months) in DJF. Finally, in
Region 8 (southwest) rainfall and USM are skilfully predicted at short-lead times in JJA. This
rainfall signal appears persistent, as LSM has strong skill scores at a 7-month (5-month) lead-
time in MAM (DJF). Theses results show that indices of large-scale climate variability are able
to skilfully predict rainfall and soil moisture in JJA, SON and DJF in the northeast (Region 3a)
and southeast (Region 4b) of Australia (Figure 7.2).

In Figure 7.3 we explore the predictability of SON and DJF rainfall, USM and LSM in
other regions. In SON (Figure 7.3a) maximum predictability occurs in eastern and northern
Australia, where skill levels for rainfall and USM reach 0.5 at lead-times up to 5-months. In the
southeast (Regions 4a—7) LSM skill levels are maintained for an additional 1-2 months. In
Region 4b, in the agriculturally important Murray-Darling Basin predictions of SON catchment
wetness from two seasons ahead are as skilful as the simultaneous model as skill is maintained
to 6-month lead-time. In the north (Regions 1, 2, 3b) there is little skill at predicting LSM up to
the 5-month lead-time. At longer lead-times (> 5-months), LSM predictability increases in
Region 2, likely as a consequence of smoothing of shorter-term month-to-month variability. The
difference in LSM predictability between Regions 1, 2 and 3b (with distinct wet and dry
seasons) and Region 3a (wet throughout the year) shows the additional predictability in LSM
that stems from the slow movement of water through the hydrological cycle, in addition to the
effect of persistence of large-scale climate modes on rainfall, USM and LSM. In southeast
Australia (Regions 4c, 5 and 6) both USM and LSM have greater predictability than rainfall to a

6-month lead-time; thereafter all three variables follow a similar skill decay pattern.

A larger increase of LSM predictability over rainfall and USM occurs in DJF (Figure
7.3b), compared to SON, in the southern and eastern Australia. Predictability for USM often
mirrors that for rainfall (e.g. Regions 3a-8), albeit with slightly higher skill levels as USM
smooths some high frequency variability. Predictability is highest for LSM, with a maximum at
the 4-5 month lead-time (e.g. Region 4a). In Region 5, LSM is predictable to a lead-time of 8
months. In Region 7 the predictability of LSM exceeds 0.4 at the 4-month lead-time despite

little skill at zero lag.

The skill in predicting LSM several seasons in advance stems from three factors: (1) the
persistence of ENSO for 9-10 months from onset; (2) its typical adherence to the annual cycle
and (3) the time moisture takes to move through the system. Soil moisture filters some high
frequency variability in high-rainfall drainage divisions and the natural smoothing of LSM

results in greater predictability, as stochastic noise in the rainfall record is not present.
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Figure 7.3. Skill of random forest models at predicting rainfall (black solid),
upper-layer soil moisture (red dashed) and lower-layer soil
moisture (blue dot-dashed) in a) SON and b) DJF. The spatial
distribution of regions is shown on the map. Region numbers
correspond to regions outlined in Table 7.1.
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7.5 Conclusions

Here the predictive persistence of seasonal rainfall and soil moisture in Australian drainage
divisions from a suite of oceanic and atmospheric indices of large-scale modes of climate
variability that have relationships with Australian rainfall (Risbey et al. 2009) has been
assessed. Random forest and linear regression show comparable skill in predicting SON rainfall
regimes in the Murray-Darling Basin; demonstrating that our results are unlikely to be

dependant on statistical method.

Predictability of hydroclimatic regimes varies consistently with known relationships. The
novel finding of this research is that the predictability of rainfall and USM behaves differently
to that of LSM. For example, maximum skill at predicting northern and eastern Australian
rainfall and USM is tied to the seasonal cycle and persistence of the tropical modes of
variability. However, LSM can be skilfully predicted for an additional 1-2 months lead-time in
southeastern Australia. Maximum skill levels for rainfall and USM generally occur at zero lag,
as they respond immediately to variability in large-scale climate modes. Previous research
demonstrated that soil moisture has a stronger relationship with antecedent soil moisture
compared to large-scale drivers of climate variability (Kirono et al. 2010). Here we extend this
finding by showing that LSM can be skilfully predicted for a longer lead-time than rainfall or
USM, from large-scale climate drivers. The predictability of rainfall and USM stems from the
persistence of large-scale modes of climate variability from onset, in contrast, the predictability
of LSM has two sources. First, water takes time to travel through the hydrological cycle. A
hydrological signal propagates from the beginning of the ENSO cycle in response to the
influence on rainfall and affects LSM for some months. LSM smooths the signal and removes
some of the noise inherent in the rainfall records. Secondly, this effect is enhanced by the
persistence of ENSO, as ongoing impacts on rainfall propagate through the hydrological cycle
to LSM. For rainfall and USM the predictability stems only from the tendency of ENSO to
remain in phase from onset, while for LSM the persistence of ENSO acts to reinforce the initial
signal. LSM is therefore more predictable than rainfall or USM in DJF and, at some lead-times,
in SON. This suggests that greater confidence can be attached to seasonal forecasts of LSM
compared to rainfall, which is valuable for industries such as agriculture. We have shown that
tree-based statistical methods, recognised as a powerful data-mining technique, can be useful in
climate research and have potential as a forecast tool. There are two limitations of this study that
provide avenues for future research. Firstly, the only predictor variables included in this study
are indices of ENSO, the IOD and the STR. The inclusion of additional predictor variables, such

as indices of the Southern Annular Mode or antecedent hydroclimatic conditions, would likely
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increase predictability. The additional predictability gained by the inclusion of these indices
using tree-based methods is one avenue for future research. Secondly, the relationship between
ENSO and Australian rainfall is known to vary on multi-decadal (Power et al. 1999) and so the
predictability of Australian hydroclimatic regimes also varies on a multi-decadal scale.
Throughout this thesis the focus has been on the drivers of interannual hydroclimatic variability,
but the relationships between predictor variables that vary on a multi-decadal scale remains an
important questions. The impact of this multi-decadal variability could be the subject of future
research. Random forest can incorporate multiple highly correlated predictor variables, be
applied where little is known a priori about the data, requires no assumptions about data
structure and distribution and contains increased protections against model over-fitting through
the implementation of in-bag and out-of-bag samples. The random forest technique also
removes some of the instability inherent in highly data dependent individual tree-based

methods.
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Chapter 8 : Synthesis and Conclusions

8.1 Wider context and innovation

High interannual variability and low water availability, combined with social and
economic pressures, makes water resource management a key issue for Australia. These
pressures are likely to increase in the future when it is predicted that the most densely populated

region of Australia, the southeast, will become warmer and drier.

The relationship between large-scale modes of climate variability and Australian rainfall
has been well established over recent decades, and there is extensive evidence that interactions
between these climate drivers are critical in explaining hydroclimatic variability. This thesis
aimed to increase understanding of how interactions between large-scale climate drivers

influence Australian hydroclimatic regimes.

Four research questions were developed within this theme and answered through Chapters
4 — 7. The complexity of the research questions increased throughout the thesis, beginning with
an examination of the linear relationships between indices of large-scale variability and
Australian hydroclimatic variability with a relatively new data set (Chapter 4). Next was a
thorough introduction to the tree-based methods and the associated terminology, and an
exploration of tropical and sub-tropical interactions that are important for regional rainfall
regimes in Chapter 5. Chapter 6 investigated interactions between facets of STR variability that
are important in defining southeast Australian rainfall regimes. Finally, in Chapter 7, the

predictability of Australian hydroclimates using tree-based methods was discussed.

The unique aspects of this work are listed below, followed by a detailed discussion of each
contribution individually (Sections 8.2 - 8.5) and finishing with a synthesis and concluding
remarks (Section 8.6). Methodologically, this thesis has demonstrated the value of tree-based
methods to extend understanding of interactions between climate drivers. A tree-based analysis
is appropriate for studying discrete, event-based phenomena, such as rainfall or the large-scale
conditions (or combinations of conditions) that make rainfall more or less likely. As such,
additional insights and more nuanced information about interactions between indices of large-

scale climate variability are gained from a tree-based analysis.

The first scientific contribution of this thesis was a complete analysis of the simultaneous
and lagged linear relationships between large-scale modes of climate variability and Australian
hydroclimate (rainfall and two layers of soil moisture), validating the dataset used throughout

the thesis (Section 8.2). Analysis of tree-based models using all predictor variables (indices of
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ENSO, IOD and the STR) confirmed that the novel statistical technique was consistent with the
correlation analysis. In addition, the models defining rainfall regimes from a subset of predictor
variables demonstrated additional insights as to the nature of tropical — sub-tropical interactions
that are important for regional Australian rainfall regimes (Section 8.3). Next, the role of STR
position in defining ‘winter-like’ and ‘summer-like’ rainfall regimes was demonstrated (Section
8.4). The final contribution of the research was to show the increased predictability of lower-

layer soil moisture compared to upper-layer soil moisture and rainfall (Section 8.5).
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8.2 Linear relationships (Chapter 4)

The linear relationships between indices of remote (i.e. ENSO and 10D) and regional (i.e.
STR) large-scale variability and Australian hydroclimatic variability (rainfall and soil moisture)
were analysed in Chapter 4. It was important to establish the nature of the linear relationship
between the large-scale climate drivers and Australian hydroclimate using the indices as defined
in Chapter 3 and the AWAP dataset. Relationships were spatially and temporally consistent
with previous research, as indices of the STR, Pacific and Indian Ocean variability all

influenced hydroclimatic variability in southeastern Australia, particularly in JJA.

Both tropical climate drivers (ENSO and the IOD) have significant relationships with
hydroclimatic variability in eastern and southern Australia from JJA to DJF, with the
relationship peaking in SON. El Nifio (positive IOD) events are associated with decreased
rainfall in eastern (southern) Australia. The persistence of the tropical modes of variability
translates into significant predictability of SON rainfall and soil moisture from oceanic indices
in preceding months. Spatial and seasonal co-variability between the influences of the climate

drivers (i.e. the IOD, ENSO or the STR) can make separating the relative influences difficult.

The relationship between facets of STR variability (i.e. the position and intensity of the
STR) and Australian rainfall also follows a defined seasonal cycle, with the correlations peaking
in JJA. In all seasons, there is a stronger relationship between rainfall and soil moisture with
STR intensity, compared to position. In various seasons, the changing sign of correlations
between rainfall and both STR intensity and position suggests that a linear analysis may not
adequately capture the relationships, as small departures from the long-term mean can change
the sign of the relationship. Generally, in southern Australia increasing STR intensity is
associated with decreased rainfall, but for some regions (e.g. the east coast) and seasons (e.g.
DJF) increasing STR intensity is associated with increased rainfall, likely associated with an
intensification of the geostrophic flow from an increased pressure gradient. The relationship
with STR position is more complex and depends on the mean position of the ridge, which varies
seasonally and is thought to have changed over the instrumental record. The strong correlation
between facets of the STR and the changing nature of the relationship suggests that a statistical
technique capable of capturing non-linear interactions may be better able to extend

understanding of the relationships between the STR and Australian hydroclimatic variability.

This section validated the dataset and provided a foundation for more complex analyses in

subsequent sections. In addition, regions where there may be significant value in moving to
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more novel methods, that are suited to discrete predictor and response variables and can capture

non-linearities, were identified.
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8.3 Tropical — sub-tropical interactions that influence
Australian hydroclimatic regimes (Chapter 5)

Following from the validation of the datasets, Chapter 5 explored the relationships between
Australian hydroclimate and large-scale modes of climate variability using novel tree-based

methods (i.e. Classification and Regression Trees, CART).

In a validation of the novel statistical technique, tree-based models using all predictor
variables defined hydroclimatic regimes in 12 regions of Australia, that were seasonally and
spatially consistently with the conventional linear analysis. For example, classification trees
showed that indices of ENSO generally dominated in northern and eastern Australia, while
indices of Indian Ocean variability and the STR typically dominating in the south. Furthermore,
the tree-based models are able to capture seasonal variability in the relationships between
predictor and response variables. When the influence of the tropical modes is weak in MAM,
facets of STR variability are selected as the most important predictor variables in a majority of
regions. This shows that the tree-based models capture the same relationships and sources of

variability as the linear analysis.

The most important predictor variable defined in the tree-based analysis was often also the
most highly linearly correlated variable. Where strong linear relationships existed between
predictor and response variables, the tree-based models tended to be dominated by this linear
relationship with multiple splits on a single predictor variable. This suggests that an analysis
with a linear statistical framework adequately captures those relationships. However, the most
highly correlated predictor variable was not always selected as the most important variable,
which shows that the tree-based method can extract different information about the relationships

between predictor and response variables.

A pairwise analysis using a subset of predictor variables (i.e. ENSO, IOD and STR)
demonstrated the additional insights a tree-based analysis could provide as to the nature of
tropical — sub-tropical interactions. Case studies from regions in north- and southeastern
Australia showed the importance of interactions between tropical — sub-tropical climate drivers
in defining rainfall regimes. Consistently, across different regions, the most spatially
homogenous rainfall regimes were defined when the tropical modes of variability and the STR
were in the same phase, showing the importance of phase locking for rainfall regimes; i.e. a wet
regime with continent wide positive rainfall anomalies is defined when a weak STR combines

with a La Nifla event.
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For example, during JJA in the semi-arid portion of the Murray-Darling Basin, the “in-
phase” regimes classified from El Nifio (La Nifia) conditions and high (low) STR intensity were
characterised by continent-wide negative (positive) rainfall anomalies. Conversely, when El
Nifio (La Nifia) conditions were combined with low (high) STR intensity the influence of ENSO
is felt only in northeast Australia while the STR dominates in the south. This shows how the
STR can modulate the ENSO teleconnection to southern Australia. This suggests that these
interactions may be able to account for some differences in the impacts of El Nifio events. The
modulation of the ENSO teleconnection over southern Australia by the STR is an important
aspect of this work and leads to further examination of the role of the STR in southeastern

Australia.
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8.4 Interactions between STR intensity and position
that influence southeast Australian rainfall (Chapter
6)

The linear relationships between southeast Australian rainfall and STR intensity and
position were shown to follow the seasonal cycle, developing during MAM and peaking in JJA.
Southeastern Australian rainfall anomalies in MAM and JJA were the focus of this chapter and
it was shown that in both seasons rainfall has stronger linear relationships with STR intensity
than with its position. Analysis of spatial correlations in two 50-year epochs showed significant
changes in relationships over time. In particular, the sign of the relationship between STR
position and rainfall in southeast Australia changes between epochs which suggests a non-linear
relationship and shows the importance of the mean position of the STR in a non-stationary

climate.

The interactions between STR position and intensity that influence SEA rainfall were
explored using classification trees. Consistent with the linear analysis, the tree-based methods
showed that STR intensity was the most important predictor variable in both seasons, defining
dry regimes when MSLP was high. Composite rainfall and vector wind anomalies showed a
reduction in the mean western flow in these dry regimes suggesting a reduction in frontal
activity across southern Australia when STR intensity is high. Analysis of the years in the dry
terminal nodes suggested that the Millennium Drought was linked to increasing STR intensity,
as 11 out of a total of 13 dry MAMSs and all dry JJAs since 1990 and were classified into this
dry regime.

The tree-based analysis demonstrated complexities in the STR — rainfall relationship that
were masked by the linear analysis. In MAM, STR position was required to classify rainfall
regimes when STR intensity is below average. In JJA, STR position was only required to
classify rainfall regimes when the intensity was neither high nor low. This suggests that the

relationship between STR intensity and rainfall is much more linear in JJA compared to MAM.

In MAM, when STR intensity was low, two distinct rainfall regimes where defined
depending on the position of the STR. A ‘summer-like’ rainfall regime was defined when the
STR is in a southerly position. In this regime, positive rainfall anomalies stretch across the east
coast and stemmed from tropical interactions. This ‘summer-like’ regime occurred infrequently
across the instrumental record but with no distinct trend. In contrast, the ‘winter-like’ regime
was defined when the STR was at lower latitudes and differs markedly. Positive rainfall

anomalies are confined to the region in southern Australia that is influenced by frontal activity,

Kirien Whan Chapter 8: Synthesis and Conclusions



194

consistent with an increase in the mean westerly flow. The ‘winter-like’ regime was much more
common over the instrumental record, but has only been seen once since 1990. In JJA, the role
of STR position was less well defined, consistent with the mean position of the ridge (north of

southeast Australia) in this season.

This analysis highlighted the importance of STR position in the transition seasons (e.g.
MAM) when the STR is rapidly moving from the southerly summer position to the northerly

winter position. In addition, the role of the STR in the Millennium Drought was demonstrated.

Kirien Whan Chapter 8: Synthesis and Conclusions



195

8.5 The potential predictability of hydroclimatic
regimes with random forest and linear regression
models (Chapter 7)

The potential predictability of rainfall and soil moisture regimes using tree-based methods
was assessed in Chapter 7. Although this work was set in a seasonal forecasting context, the aim
was to examine the relative predictability of hydroclimatic regimes. Area-averaged seasonal
rainfall, upper-layer and lower-layer soil moisture in 12 Australian drainage divisions were
predicted from a suite of 14 remote and regional, oceanic and atmospheric indices of large-scale
climate variability. Initially, it was shown that stepwise selected linear regression models and
random forests (a bootstrapping implementation of CART) have similar skill in predicting
Murray-Darling Basin SON rainfall, suggesting that the following results are not dependent on

statistical method.

The wvariability in predictability of hydroclimatic regimes is spatially and temporally
consistent with linear analysis. The novel contribution of this work was to demonstrate that the
predictability, from large-scale modes of climate variability, of rainfall and upper-layer soil
moisture behaves differently than lower-layer soil moisture. Confirming previous work, it was
shown that the maximum skill at predicting rainfall and upper-layer soil moisture occurs in
SON at short lead-times (< 5-months) in northern and eastern Australia, with predictability tied
to the seasonal cycle and the persistence of the tropical modes of variability. In other seasons,
rainfall and upper-layer soil moisture respond directly to predictor variables and so maximum
skill occurs at the shortest lead-times. The source of rainfall and upper-layer soil moisture
predictability is the persistence of the large-scale modes of climate variability from their onset

(e.g. ENSO), so predictability is limited by the tropical modes’ adherence to the seasonal cycle.

In SON, lower-layer soil moisture can be skilfully predicted for an additional 1-2 months
in southeastern Australia. However, the predictability of south, east and northern Australian
lower-layer soil moisture peaks in DJF due to the additional time from the onset of drivers such
as ENSO. The predictability of lower-layer soil moisture in has two sources; the time water
takes to move through the hydrological system and the persistence of the tropical modes of

variability.
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8.6 Concluding remarks and future work

The importance of effective water resource management is currently a critical issue in
Australia and will increase in the future if southeast Australia becomes drier and hotter as a
result of climate change, as predicted by most climate models. Year-to-year variability in large-
scale climate drivers can have severe consequences on water intensive primary industries such
as agriculture and mining. Additional information about the influence of predictable large-scale
modes of climate variability on hydroclimatic regimes is valuable as it allows more informed
decision-making. Increasing understanding about the factors controlling interannual climate
variability will increase resilience to the effects of climate change. The aim of this research was
to enhance understanding about interactions between large-scale modes of climate variability
that influenced Australian hydroclimatic regimes. The key findings of this research add valuable
insight about drivers of Australian hydroclimatic variability. The ability of tree-based methods
to provide additional understanding and insights about a complex, multivariate system was
demonstrated. Thus tree-based methods can be applied in other complex systems to increase
understanding about interactions between strongly correlated predictor variables. Specifically,
tree-based models added insight about the nature of interactions between drivers of Australian
hydroclimatic regimes and demonstrate the increased predictability of lower-layer soil moisture
over rainfall and upper-layer soil moisture, however, future work should be aimed at
quantifying the significance of splits. The impacts of hydroclimatic extremes can be
economically and environmentally costly, so increased understanding about interactions
between climate drivers that influence hydroclimatic regimes will enable better planning by

resource managers.

There are many possible application of this approach in the climate systems science, where
understanding complex interactions in non-linear systems is key. Numerous large-scale modes
of climate variability influence hydroclimatic variability in all continents. Often linear
relationships are well recognised but interactions between multiple climate drivers are less well
understood, as they are more difficult to explore with in a classical linear framework. Tree-
based methods can easily be employed in this type of analysis with little computational cost. In
addition, while the aims of this thesis have been achieved, there are some limitations to this
research that provides avenues for future work. The focus here has been on tropical and sub-
tropical drivers of Australian climate; future work could explore interactions with high latitude
modes of variability, e.g. the Southern Annular Mode (SAM), or the relationship with

antecedent conditions. The focus in this work has been on the interannual variability; as such
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the role of multi-decadal variability (i.e. the IPO) remains an important question. Furthermore,
the value of tree-based methods for examining interactions between climate drivers as simulated

in regional or global climate models should be explored in the future.
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